» Articles » PMID: 23541768

Two Antagonistic Clock-regulated Histidine Kinases Time the Activation of Circadian Gene Expression

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2013 Apr 2
PMID 23541768
Citations 65
Authors
Affiliations
Soon will be listed here.
Abstract

The cyanobacterial circadian pacemaker consists of a three-protein clock--KaiA, KaiB, and KaiC--that generates oscillations in the phosphorylation state of KaiC. Here we investigate how temporal information encoded in KaiC phosphorylation is transduced to RpaA, a transcription factor required for circadian gene expression. We show that phosphorylation of RpaA is regulated by two antagonistic histidine kinases, SasA and CikA, which are sequentially activated at distinct times by the Kai clock complex. SasA acts as a kinase toward RpaA, whereas CikA, previously implicated in clock input, acts as a phosphatase that dephosphorylates RpaA. CikA and SasA cooperate to generate an oscillation of RpaA activity that is distinct from that generated by either enzyme alone and offset from the rhythm of KaiC phosphorylation. Our observations reveal how circadian clocks can precisely control the timing of output pathways via the concerted action of two oppositely acting enzymes.

Citing Articles

Cyanobacterial circadian regulation enhances bioproduction under subjective nighttime through rewiring of carbon partitioning dynamics, redox balance orchestration, and cell cycle modulation.

Gilliam A, Sadler N, Li X, Garcia M, Johnson Z, Velickovic M Microb Cell Fact. 2025; 24(1):56.

PMID: 40055679 PMC: 11889915. DOI: 10.1186/s12934-025-02665-5.


Temperature-dependent fold-switching mechanism of the circadian clock protein KaiB.

Zhang N, Sood D, Guo S, Chen N, Antoszewski A, Marianchuk T Proc Natl Acad Sci U S A. 2024; 121(51):e2412327121.

PMID: 39671178 PMC: 11665890. DOI: 10.1073/pnas.2412327121.


Clocking out and letting go to unleash green biotech applications in a photosynthetic host.

Xu Y, Jabbur M, Mori T, Young J, Johnson C Proc Natl Acad Sci U S A. 2024; 121(21):e2318690121.

PMID: 38739791 PMC: 11127020. DOI: 10.1073/pnas.2318690121.


The inner workings of an ancient biological clock.

Fang M, LiWang A, Golden S, Partch C Trends Biochem Sci. 2024; 49(3):236-246.

PMID: 38185606 PMC: 10939747. DOI: 10.1016/j.tibs.2023.12.007.


Spatio-temporal coherence of circadian clocks and temporal control of differentiation in filaments.

Arbel-Goren R, Dassa B, Zhitnitsky A, Valladares A, Herrero A, Flores E mSystems. 2023; 9(1):e0070023.

PMID: 38079111 PMC: 10805033. DOI: 10.1128/msystems.00700-23.


References
1.
Smith R, Williams S . Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus. Proc Natl Acad Sci U S A. 2006; 103(22):8564-9. PMC: 1482530. DOI: 10.1073/pnas.0508696103. View

2.
Valencia S J, Bitou K, Ishii K, Murakami R, Morishita M, Onai K . Phase-dependent generation and transmission of time information by the KaiABC circadian clock oscillator through SasA-KaiC interaction in cyanobacteria. Genes Cells. 2012; 17(5):398-419. DOI: 10.1111/j.1365-2443.2012.01597.x. View

3.
Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson C, Tanabe A . Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science. 1998; 281(5382):1519-23. DOI: 10.1126/science.281.5382.1519. View

4.
Zhang X, Dong G, Golden S . The pseudo-receiver domain of CikA regulates the cyanobacterial circadian input pathway. Mol Microbiol. 2006; 60(3):658-68. DOI: 10.1111/j.1365-2958.2006.05138.x. View

5.
Qin X, Byrne M, Mori T, Zou P, Williams D, Mchaourab H . Intermolecular associations determine the dynamics of the circadian KaiABC oscillator. Proc Natl Acad Sci U S A. 2010; 107(33):14805-10. PMC: 2930409. DOI: 10.1073/pnas.1002119107. View