» Articles » PMID: 23536067

ACR-12 Ionotropic Acetylcholine Receptor Complexes Regulate Inhibitory Motor Neuron Activity in Caenorhabditis Elegans

Overview
Journal J Neurosci
Specialty Neurology
Date 2013 Mar 29
PMID 23536067
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Heterogeneity in the composition of neurotransmitter receptors is thought to provide functional diversity that may be important in patterning neural activity and shaping behavior (Dani and Bertrand, 2007; Sassoè-Pognetto, 2011). However, this idea has remained difficult to evaluate directly because of the complexity of neuronal connectivity patterns and uncertainty about the molecular composition of specific receptor types in vivo. Here we dissect how molecular diversity across receptor types contributes to the coordinated activity of excitatory and inhibitory motor neurons in the nematode Caenorhabditis elegans. We show that excitatory and inhibitory motor neurons express distinct populations of ionotropic acetylcholine receptors (iAChRs) requiring the ACR-12 subunit. The activity level of excitatory motor neurons is influenced through activation of nonsynaptic iAChRs (Jospin et al., 2009; Barbagallo et al., 2010). In contrast, synaptic coupling of excitatory and inhibitory motor neurons is achieved through a second population of iAChRs specifically localized at postsynaptic sites on inhibitory motor neurons. Loss of ACR-12 iAChRs from inhibitory motor neurons leads to reduced synaptic drive, decreased inhibitory neuromuscular signaling, and variability in the sinusoidal motor pattern. Our results provide new insights into mechanisms that establish appropriately balanced excitation and inhibition in the generation of a rhythmic motor behavior and reveal functionally diverse roles for iAChR-mediated signaling in this process.

Citing Articles

Neural Circuit Remodeling: Mechanistic Insights from Invertebrates.

Liu S, Alexander K, Francis M J Dev Biol. 2024; 12(4).

PMID: 39449319 PMC: 11503349. DOI: 10.3390/jdb12040027.


The homeodomain transcriptional regulator DVE-1 directs a program for synapse elimination during circuit remodeling.

Alexander K, Ramachandran S, Biswas K, Lambert C, Russell J, Oliver D Nat Commun. 2023; 14(1):7520.

PMID: 37980357 PMC: 10657367. DOI: 10.1038/s41467-023-43281-4.


UBR-1 ubiquitin ligase regulates the balance between GABAergic and glutamatergic signaling.

Li Y, Chitturi J, Yu B, Zhang Y, Wu J, Ti P EMBO Rep. 2023; 24(11):e57014.

PMID: 37811674 PMC: 10626437. DOI: 10.15252/embr.202357014.


The diverse family of Cys-loop receptors in : insights from electrophysiological studies.

Hernando G, Turani O, Rodriguez Araujo N, Bouzat C Biophys Rev. 2023; 15(4):733-750.

PMID: 37681094 PMC: 10480131. DOI: 10.1007/s12551-023-01080-7.


Modelling organophosphate intoxication in C. elegans highlights nicotinic acetylcholine receptor determinants that mitigate poisoning.

Izquierdo P, Charvet C, Neveu C, Green A, Tattersall J, Holden-Dye L PLoS One. 2023; 18(4):e0284786.

PMID: 37083685 PMC: 10121051. DOI: 10.1371/journal.pone.0284786.


References
1.
Fowler C, Lu Q, Johnson P, Marks M, Kenny P . Habenular α5 nicotinic receptor subunit signalling controls nicotine intake. Nature. 2011; 471(7340):597-601. PMC: 3079537. DOI: 10.1038/nature09797. View

2.
Sassoe-Pognetto M . Molecular and functional heterogeneity of neural circuits: an example from the olfactory bulb. Brain Res Rev. 2010; 66(1-2):35-42. DOI: 10.1016/j.brainresrev.2010.06.003. View

3.
Cinar H, Keles S, Jin Y . Expression profiling of GABAergic motor neurons in Caenorhabditis elegans. Curr Biol. 2005; 15(4):340-6. DOI: 10.1016/j.cub.2005.02.025. View

4.
Nashmi R, Dickinson M, McKinney S, Jareb M, Labarca C, Fraser S . Assembly of alpha4beta2 nicotinic acetylcholine receptors assessed with functional fluorescently labeled subunits: effects of localization, trafficking, and nicotine-induced upregulation in clonal mammalian cells and in cultured midbrain neurons. J Neurosci. 2003; 23(37):11554-67. PMC: 6740951. View

5.
Francis M, Maricq A . Electrophysiological analysis of neuronal and muscle function in C. elegans. Methods Mol Biol. 2006; 351:175-92. DOI: 10.1385/1-59745-151-7:175. View