» Articles » PMID: 23535664

Narrowband Photodetection in the Near-infrared with a Plasmon-induced Hot Electron Device

Overview
Journal Nat Commun
Specialty Biology
Date 2013 Mar 29
PMID 23535664
Citations 60
Authors
Affiliations
Soon will be listed here.
Abstract

In gratings, incident light can couple strongly to plasmons propagating through periodically spaced slits in a metal film, resulting in a strong, resonant absorption whose frequency is determined by the nanostructure periodicity. When a grating is patterned on a silicon substrate, the absorption response can be combined with plasmon-induced hot electron photocurrent generation. This yields a photodetector with a strongly resonant, narrowband photocurrent response in the infrared, limited at low frequencies by the Schottky barrier, not the bandgap of silicon. Here we report a grating-based hot electron device with significantly larger photocurrent responsivity than previously reported antenna-based geometries. The grating geometry also enables more than three times narrower spectral response than observed for nanoantenna-based devices. This approach opens up the possibility of plasmonic sensors with direct electrical readout, such as an on-chip surface plasmon resonance detector driven at a single wavelength.

Citing Articles

Versatile on-chip polarization-sensitive detection system for optical communication and artificial vision.

Liu Z, Liu M, Qi L, Zhang N, Wang B, Sun X Light Sci Appl. 2025; 14(1):68.

PMID: 39900930 PMC: 11790936. DOI: 10.1038/s41377-025-01744-x.


Metasurface absorber enhanced thermoelectric conversion.

Nakayama R, Saito S, Tanaka T, Kubo W Nanophotonics. 2024; 13(8):1361-1368.

PMID: 39679227 PMC: 11636509. DOI: 10.1515/nanoph-2023-0653.


High sensitivity ultraviolet graphene-metamaterial integrated electro-optic modulator enhanced by superlubricity.

Xu Y, Zhang C, Li W, Li R, Liu J, Liu Z Nanophotonics. 2024; 11(16):3547-3557.

PMID: 39634456 PMC: 11501641. DOI: 10.1515/nanoph-2022-0185.


Silicon-based planar devices for narrow-band near-infrared photodetection using Tamm plasmons.

Liang W, Dong Y, Wen L, Long Y Nanophotonics. 2024; 13(16):2961-2970.

PMID: 39634312 PMC: 11502038. DOI: 10.1515/nanoph-2024-0062.


High-Throughput Approaches to Engineer Fluorescent Nanosensors.

Metternich J, Patjoshi S, Kistwal T, Kruss S Adv Mater. 2024; 37(1):e2411067.

PMID: 39533494 PMC: 11707575. DOI: 10.1002/adma.202411067.


References
1.
Vesseur E, de Waele R, Kuttge M, Polman A . Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy. Nano Lett. 2007; 7(9):2843-6. DOI: 10.1021/nl071480w. View

2.
Henzie J, Lee M, Odom T . Multiscale patterning of plasmonic metamaterials. Nat Nanotechnol. 2008; 2(9):549-54. DOI: 10.1038/nnano.2007.252. View

3.
Genet C, Ebbesen T . Light in tiny holes. Nature. 2007; 445(7123):39-46. DOI: 10.1038/nature05350. View

4.
Akbari A, Tait R, Berini P . Surface plasmon waveguide Schottky detector. Opt Express. 2010; 18(8):8505-14. DOI: 10.1364/OE.18.008505. View

5.
Sondergaard T, Bozhevolnyi S, Novikov S, Beermann J, Devaux E, Ebbesen T . Extraordinary optical transmission enhanced by nanofocusing. Nano Lett. 2010; 10(8):3123-8. DOI: 10.1021/nl101873g. View