» Articles » PMID: 23530060

Farnesoid X Receptor Inhibits the Transcriptional Activity of Carbohydrate Response Element Binding Protein in Human Hepatocytes

Overview
Journal Mol Cell Biol
Specialty Cell Biology
Date 2013 Mar 27
PMID 23530060
Citations 67
Authors
Affiliations
Soon will be listed here.
Abstract

The glucose-activated transcription factor carbohydrate response element binding protein (ChREBP) induces the expression of hepatic glycolytic and lipogenic genes. The farnesoid X receptor (FXR) is a nuclear bile acid receptor controlling bile acid, lipid, and glucose homeostasis. FXR negatively regulates hepatic glycolysis and lipogenesis in mouse liver. The aim of this study was to determine whether FXR regulates the transcriptional activity of ChREBP in human hepatocytes and to unravel the underlying molecular mechanisms. Agonist-activated FXR inhibits glucose-induced transcription of several glycolytic genes, including the liver-type pyruvate kinase gene (L-PK), in the immortalized human hepatocyte (IHH) and HepaRG cell lines. This inhibition requires the L4L3 region of the L-PK promoter, known to bind the transcription factors ChREBP and hepatocyte nuclear factor 4α (HNF4α). FXR interacts directly with ChREBP and HNF4α proteins. Analysis of the protein complex bound to the L4L3 region reveals the presence of ChREBP, HNF4α, FXR, and the transcriptional coactivators p300 and CBP at high glucose concentrations. FXR activation does not affect either FXR or HNF4α binding to the L4L3 region but does result in the concomitant release of ChREBP, p300, and CBP and in the recruitment of the transcriptional corepressor SMRT. Thus, FXR transrepresses the expression of genes involved in glycolysis in human hepatocytes.

Citing Articles

Disentangling Organ-Specific Roles of Farnesoid X Receptor in Bile Acid and Glucolipid Metabolism.

Li T, Fu C, Tang Z, Li C, Hua D, Liu B Liver Int. 2025; 45(4):e70027.

PMID: 40052709 PMC: 11887529. DOI: 10.1111/liv.70027.


Potential therapeutic strategies for MASH: from preclinical to clinical development.

Xie Z, Li Y, Cheng L, Huang Y, Rao W, Shi H Life Metab. 2025; 3(5):loae029.

PMID: 39872142 PMC: 11749562. DOI: 10.1093/lifemeta/loae029.


Pathophysiological Relationship between Type 2 Diabetes Mellitus and Metabolic Dysfunction-Associated Steatotic Liver Disease: Novel Therapeutic Approaches.

Ferdous S, Ferrell J Int J Mol Sci. 2024; 25(16).

PMID: 39201418 PMC: 11354927. DOI: 10.3390/ijms25168731.


Normoglycemia and physiological cortisone level maintain glucose homeostasis in a pancreas-liver microphysiological system.

Rigal S, Casas B, Kanebratt K, Wennberg Huldt C, Magnusson L, Mullers E Commun Biol. 2024; 7(1):877.

PMID: 39025915 PMC: 11258270. DOI: 10.1038/s42003-024-06514-w.


Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development.

Li T, Chiang J Pharmacol Rev. 2024; 76(6):1221-1253.

PMID: 38977324 PMC: 11549937. DOI: 10.1124/pharmrev.124.000978.


References
1.
Yamashita H, Takenoshita M, Sakurai M, Bruick R, Henzel W, Shillinglaw W . A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci U S A. 2001; 98(16):9116-21. PMC: 55382. DOI: 10.1073/pnas.161284298. View

2.
Kawaguchi T, Takenoshita M, Kabashima T, Uyeda K . Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein. Proc Natl Acad Sci U S A. 2001; 98(24):13710-5. PMC: 61106. DOI: 10.1073/pnas.231370798. View

3.
Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I . Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A. 2002; 99(24):15655-60. PMC: 137772. DOI: 10.1073/pnas.232137699. View

4.
Guinez C, Filhoulaud G, Rayah-Benhamed F, Marmier S, Dubuquoy C, Dentin R . O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver. Diabetes. 2011; 60(5):1399-413. PMC: 3292313. DOI: 10.2337/db10-0452. View

5.
Bricambert J, Miranda J, Benhamed F, Girard J, Postic C, Dentin R . Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J Clin Invest. 2010; 120(12):4316-31. PMC: 2993582. DOI: 10.1172/JCI41624. View