» Articles » PMID: 23524333

Recyclable Organic Solar Cells on Cellulose Nanocrystal Substrates

Overview
Journal Sci Rep
Specialty Science
Date 2013 Mar 26
PMID 23524333
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production.

Citing Articles

Advances in Smart Photovoltaic Textiles.

Ali I, Islam M, Yin J, Eichhorn S, Chen J, Karim N ACS Nano. 2024; 18(5):3871-3915.

PMID: 38261716 PMC: 10851667. DOI: 10.1021/acsnano.3c10033.


Efficient and Stable Air-Processed Ternary Organic Solar Cells Incorporating Gallium-Porphyrin as an Electron Cascade Material.

Soultati A, Verouti M, Polydorou E, Armadorou K, Georgiopoulou Z, Palilis L Nanomaterials (Basel). 2023; 13(20).

PMID: 37887950 PMC: 10609146. DOI: 10.3390/nano13202800.


Harnessing Nature's Ingenuity: A Comprehensive Exploration of Nanocellulose from Production to Cutting-Edge Applications in Engineering and Sciences.

Sofiah A, Pasupuleti J, Samykano M, Kadirgama K, Koh S, Tiong S Polymers (Basel). 2023; 15(14).

PMID: 37514434 PMC: 10385464. DOI: 10.3390/polym15143044.


Advances in Cellulose-Based Composites for Energy Applications.

Teng C, Tan M, Toh J, Lim Q, Wang X, Ponsford D Materials (Basel). 2023; 16(10).

PMID: 37241483 PMC: 10221535. DOI: 10.3390/ma16103856.


Isotropic Gels of Cellulose Nanocrystals Grafted with Dialkyl Groups: Influence of Surface Group Topology from Nonlinear Oscillatory Shear.

Wojno S, Sonker A, Feldhusen J, Westman G, Kadar R Langmuir. 2023; 39(18):6433-6446.

PMID: 37096902 PMC: 10173451. DOI: 10.1021/acs.langmuir.3c00210.


References
1.
Lavoine N, Desloges I, Dufresne A, Bras J . Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym. 2012; 90(2):735-64. DOI: 10.1016/j.carbpol.2012.05.026. View

2.
Habibi Y, Lucia L, Rojas O . Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010; 110(6):3479-500. DOI: 10.1021/cr900339w. View

3.
Moon R, Martini A, Nairn J, Simonsen J, Youngblood J . Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011; 40(7):3941-94. DOI: 10.1039/c0cs00108b. View

4.
Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D . Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl. 2011; 50(24):5438-66. DOI: 10.1002/anie.201001273. View

5.
Beck-Candanedo S, Roman M, Gray D . Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules. 2005; 6(2):1048-54. DOI: 10.1021/bm049300p. View