Predicting Tryptic Cleavage from Proteomics Data Using Decision Tree Ensembles
Overview
Authors
Affiliations
Trypsin is the workhorse protease in mass spectrometry-based proteomics experiments and is used to digest proteins into more readily analyzable peptides. To identify these peptides after mass spectrometric analysis, the actual digestion has to be mimicked as faithfully as possible in silico. In this paper we introduce CP-DT (Cleavage Prediction with Decision Trees), an algorithm based on a decision tree ensemble that was learned on publicly available peptide identification data from the PRIDE repository. We demonstrate that CP-DT is able to accurately predict tryptic cleavage: tests on three independent data sets show that CP-DT significantly outperforms the Keil rules that are currently used to predict tryptic cleavage. Moreover, the trees generated by CP-DT can make predictions efficiently and are interpretable by domain experts.
Application of machine learning for mass spectrometry-based multi-omics in thyroid diseases.
Che Y, Zhao M, Gao Y, Zhang Z, Zhang X Front Mol Biosci. 2025; 11:1483326.
PMID: 39741929 PMC: 11685090. DOI: 10.3389/fmolb.2024.1483326.
Ohno R, Mainka M, Kirchhoff R, Hartung N, Schebb N Molecules. 2024; 29(8).
PMID: 38675565 PMC: 11052137. DOI: 10.3390/molecules29081745.
Williams G, Couchman L, Taylor D, Sandhu J, Slingsby O, Ng L J Proteome Res. 2024; 23(8):3052-3063.
PMID: 38533909 PMC: 11301776. DOI: 10.1021/acs.jproteome.3c00762.
DbyDeep: Exploration of MS-Detectable Peptides via Deep Learning.
Son J, Na S, Paek E Anal Chem. 2023; 95(30):11193-11200.
PMID: 37459568 PMC: 10401496. DOI: 10.1021/acs.analchem.3c00460.
Holstein T, Kistner F, Martens L, Muth T Bioinformatics. 2023; 39(5).
PMID: 37129543 PMC: 10182852. DOI: 10.1093/bioinformatics/btad289.