Villegas M, Yvon M, Le Blaye S, Mathieu L, Blanc S, Zeddam J
Microbiol Spectr. 2024; 12(5):e0028724.
PMID: 38517168
PMC: 11064520.
DOI: 10.1128/spectrum.00287-24.
de Moliner F, Knox K, Gordon D, Lee M, Tipping W, Geddis A
Angew Chem Weinheim Bergstr Ger. 2024; 133(14):7715-7720.
PMID: 38505234
PMC: 10946860.
DOI: 10.1002/ange.202016802.
Mcdowell N, Ball M, Bond-Lamberty B, Kirwan M, Krauss K, Megonigal J
Glob Chang Biol. 2022; 28(20):5881-5900.
PMID: 35689431
PMC: 9544010.
DOI: 10.1111/gcb.16297.
Nakad M, Domec J, Sevanto S, Katul G
Plant Physiol. 2022; 189(4):2061-2071.
PMID: 35588257
PMC: 9343002.
DOI: 10.1093/plphys/kiac231.
Stanfield R, Bartlett M
Front Plant Sci. 2022; 13:787837.
PMID: 35251074
PMC: 8891486.
DOI: 10.3389/fpls.2022.787837.
Seasonal changes in temperate woody plant phloem anatomy and physiology: implications for long-distance transport.
Ray D, Savage J
AoB Plants. 2021; 13(4):plab028.
PMID: 34234934
PMC: 8255074.
DOI: 10.1093/aobpla/plab028.
A Palette of Minimally Tagged Sucrose Analogues for Real-Time Raman Imaging of Intracellular Plant Metabolism.
de Moliner F, Knox K, Gordon D, Lee M, Tipping W, Geddis A
Angew Chem Int Ed Engl. 2021; 60(14):7637-7642.
PMID: 33491852
PMC: 8048481.
DOI: 10.1002/anie.202016802.
Modelling the physiological relevance of sucrose export repression by an Flowering Time homolog in the long-distance phloem of potato.
van den Herik B, Bergonzi S, Bachem C, Ten Tusscher K
Plant Cell Environ. 2020; 44(3):792-806.
PMID: 33314152
PMC: 7986384.
DOI: 10.1111/pce.13977.
Model-assisted analysis of the peach pedicel-fruit system suggests regulation of sugar uptake and a water-saving strategy.
Constantinescu D, Vercambre G, Genard M
J Exp Bot. 2020; 71(12):3463-3474.
PMID: 32420599
PMC: 7307860.
DOI: 10.1093/jxb/eraa103.
Model-assisted comparison of sugar accumulation patterns in ten fleshy fruits highlights differences between herbaceous and woody species.
Cakpo C, Vercambre G, Baldazzi V, Roch L, Dai Z, Valsesia P
Ann Bot. 2020; 126(3):455-470.
PMID: 32333754
PMC: 7424760.
DOI: 10.1093/aob/mcaa082.
Fruit Salad in the Lab: Comparing Botanical Species to Help Deciphering Fruit Primary Metabolism.
Roch L, Dai Z, Gomes E, Bernillon S, Wang J, Gibon Y
Front Plant Sci. 2019; 10:836.
PMID: 31354750
PMC: 6632546.
DOI: 10.3389/fpls.2019.00836.
The spent culture supernatant of Pseudomonas syringae contains azelaic acid.
Gowrinadh Javvadi S, Cescutti P, Rizzo R, Lonzarich V, Navarini L, Licastro D
BMC Microbiol. 2018; 18(1):199.
PMID: 30486794
PMC: 6264629.
DOI: 10.1186/s12866-018-1352-z.
Modelling grape growth in relation to whole-plant carbon and water fluxes.
Zhu J, Genard M, Poni S, Gambetta G, Vivin P, Vercambre G
J Exp Bot. 2018; 70(9):2505-2521.
PMID: 30357362
PMC: 6487596.
DOI: 10.1093/jxb/ery367.
Micro Imaging Displays the Sucrose Landscape within and along Its Allocation Pathways.
Guendel A, Rolletschek H, Wagner S, Muszynska A, Borisjuk L
Plant Physiol. 2018; 178(4):1448-1460.
PMID: 30275056
PMC: 6288747.
DOI: 10.1104/pp.18.00947.
Sucrose supply from leaves is required for aerenchymatous phellem formation in hypocotyl of soybean under waterlogged conditions.
Takahashi H, Xiaohua Q, Shimamura S, Yanagawa A, Hiraga S, Nakazono M
Ann Bot. 2018; 121(4):723-732.
PMID: 29370345
PMC: 5853023.
DOI: 10.1093/aob/mcx205.
Phloem Loading through Plasmodesmata: A Biophysical Analysis.
Comtet J, Turgeon R, Stroock A
Plant Physiol. 2017; 175(2):904-915.
PMID: 28794259
PMC: 5619879.
DOI: 10.1104/pp.16.01041.
Discharge of surplus phloem water may be required for normal grape ripening.
Zhang Y, Keller M
J Exp Bot. 2017; 68(3):585-595.
PMID: 28082510
PMC: 5444433.
DOI: 10.1093/jxb/erw476.
Testing the Münch hypothesis of long distance phloem transport in plants.
Knoblauch M, Knoblauch J, Mullendore D, Savage J, Babst B, Beecher S
Elife. 2016; 5.
PMID: 27253062
PMC: 4946904.
DOI: 10.7554/eLife.15341.
Inter-Species Comparative Analysis of Components of Soluble Sugar Concentration in Fleshy Fruits.
Dai Z, Wu H, Baldazzi V, van Leeuwen C, Bertin N, Gautier H
Front Plant Sci. 2016; 7:649.
PMID: 27242850
PMC: 4872523.
DOI: 10.3389/fpls.2016.00649.
Topological Phenotypes Constitute a New Dimension in the Phenotypic Space of Leaf Venation Networks.
Ronellenfitsch H, Lasser J, Daly D, Katifori E
PLoS Comput Biol. 2015; 11(12):e1004680.
PMID: 26700471
PMC: 4699199.
DOI: 10.1371/journal.pcbi.1004680.