» Articles » PMID: 23514600

Probing the Mechanism of Cyanobacterial Aldehyde Decarbonylase Using a Cyclopropyl Aldehyde

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2013 Mar 22
PMID 23514600
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Cyanobacterial aldehyde decarbonylase (cAD) is a non-heme diiron oxygenase that catalyzes the conversion of fatty aldehydes to alkanes and formate. The mechanism of this chemically unusual reaction is poorly understood. We have investigated the mechanism of C1-C2 bond cleavage by cAD using a fatty aldehyde that incorporates a cyclopropyl group, which can act as a radical clock. When reacted with cAD, the cyclopropyl aldehyde produces 1-octadecene as the rearranged product, providing evidence for a radical mechanism for C-C bond scission. In an alternate pathway, the cyclopropyl aldehyde acts as a mechanism-based irreversible inhibitor of cAD through covalent binding of the alkyl chain to the enzyme.

Citing Articles

Incorporation, fate, and turnover of free fatty acids in cyanobacteria.

Kahn A, Oliveira P, Cuau M, Leao P FEMS Microbiol Rev. 2023; 47(2).

PMID: 37061785 PMC: 10114076. DOI: 10.1093/femsre/fuad015.


Recent advances in the improvement of cyanobacterial enzymes for bioalkane production.

Hayashi Y, Arai M Microb Cell Fact. 2022; 21(1):256.

PMID: 36503511 PMC: 9743570. DOI: 10.1186/s12934-022-01981-4.


Utilizing Alcohol for Alkane Biosynthesis by Introducing a Fatty Alcohol Dehydrogenase.

Sui Y, Kishino S, Maruyama S, Ito M, Muramatsu M, Obata S Appl Environ Microbiol. 2022; 88(23):e0126422.

PMID: 36416567 PMC: 9746291. DOI: 10.1128/aem.01264-22.


Fingerprinting cities: differentiating subway microbiome functionality.

Zhu C, Miller M, Lusskin N, Mahlich Y, Wang Y, Zeng Z Biol Direct. 2019; 14(1):19.

PMID: 31666099 PMC: 6822482. DOI: 10.1186/s13062-019-0252-y.


Metal-Free Aryl Cross-Coupling Directed by Traceless Linkers.

Haensch V, Neuwirth T, Steinmetzer J, Kloss F, Beckert R, Grafe S Chemistry. 2019; 25(70):16068-16073.

PMID: 31621964 PMC: 6973076. DOI: 10.1002/chem.201903582.


References
1.
Rude M, Schirmer A . New microbial fuels: a biotech perspective. Curr Opin Microbiol. 2009; 12(3):274-81. DOI: 10.1016/j.mib.2009.04.004. View

2.
Buist P . Exotic biomodification of fatty acids. Nat Prod Rep. 2007; 24(5):1110-27. DOI: 10.1039/b508584p. View

3.
Eser B, Das D, Han J, Jones P, Marsh E . Oxygen-independent alkane formation by non-heme iron-dependent cyanobacterial aldehyde decarbonylase: investigation of kinetics and requirement for an external electron donor. Biochemistry. 2011; 50(49):10743-50. PMC: 3235001. DOI: 10.1021/bi2012417. View

4.
Bourdenx B, Bernard A, Domergue F, Pascal S, Leger A, Roby D . Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol. 2011; 156(1):29-45. PMC: 3091054. DOI: 10.1104/pp.111.172320. View

5.
Cheesbrough T, Kolattukudy P . Microsomal preparation from an animal tissue catalyzes release of carbon monoxide from a fatty aldehyde to generate an alkane. J Biol Chem. 1988; 263(6):2738-43. View