Tweneboah A, Rosenau J, Addo K, Addison T, Ibrahim M, Weber J
Am J Trop Med Hyg. 2024; 110(6):1127-1136.
PMID: 38697074
PMC: 11154048.
DOI: 10.4269/ajtmh.23-0329.
Ratcliffe N, Mello C, Castro H, Dyson P, Figueiredo M
Microorganisms. 2024; 12(3).
PMID: 38543619
PMC: 10974449.
DOI: 10.3390/microorganisms12030568.
De Niz M, Frachon E, Gobaa S, Bastin P
PLoS One. 2023; 18(12):e0296257.
PMID: 38134042
PMC: 10745224.
DOI: 10.1371/journal.pone.0296257.
Toh J, Nkouawa A, Dong G, Kolev N, Tschudi C
PLoS Pathog. 2023; 19(6):e1011438.
PMID: 37276216
PMC: 10270622.
DOI: 10.1371/journal.ppat.1011438.
Halliday C, Dean S, Sunter J, Wheeler R
Wellcome Open Res. 2023; 8:46.
PMID: 37251657
PMC: 10209625.
DOI: 10.12688/wellcomeopenres.18586.2.
Prevalence and Association of Trypanosomes and in Tsetse Flies from the Kafue National Park in Zambia.
Kallu S, Ndebe J, Qiu Y, Nakao R, Simuunza M
Trop Med Infect Dis. 2023; 8(2).
PMID: 36828496
PMC: 9960957.
DOI: 10.3390/tropicalmed8020080.
The genome of sheep ked (Melophagus ovinus) reveals potential mechanisms underlying reproduction and narrower ecological niches.
Zhang Q, Zhou Q, Han S, Li Y, Wang Y, He H
BMC Genomics. 2023; 24(1):54.
PMID: 36717784
PMC: 9887928.
DOI: 10.1186/s12864-023-09155-1.
Pathogenicity and virulence of African trypanosomes: From laboratory models to clinically relevant hosts.
Morrison L, Steketee P, Tettey M, Matthews K
Virulence. 2022; 14(1):2150445.
PMID: 36419235
DOI: 10.1080/21505594.2022.2150445.
A multi-adenylate cyclase regulator at the flagellar tip controls African trypanosome transmission.
Bachmaier S, Giacomelli G, Calvo-Alvarez E, Vieira L, Van Den Abbeele J, Aristodemou A
Nat Commun. 2022; 13(1):5445.
PMID: 36114198
PMC: 9481589.
DOI: 10.1038/s41467-022-33108-z.
Stage-Specific COPII-Mediated Cargo Selectivity in African Trypanosomes.
Sharif M, Bangs J
mSphere. 2022; 7(4):e0018822.
PMID: 35727050
PMC: 9429938.
DOI: 10.1128/msphere.00188-22.
Mouse experiments demonstrate differential pathogenicity and virulence of Trypanosoma brucei rhodesiense strains.
Kipkorir L, John T, Owino O, John O, Robert S, Daniel M
Exp Parasitol. 2021; 228:108135.
PMID: 34284027
PMC: 7613321.
DOI: 10.1016/j.exppara.2021.108135.
Paratransgenic manipulation of a tsetse microRNA alters the physiological homeostasis of the fly's midgut environment.
Yang L, Weiss B, Williams A, Aksoy E, de Silva Orfano A, Son J
PLoS Pathog. 2021; 17(6):e1009475.
PMID: 34107000
PMC: 8216540.
DOI: 10.1371/journal.ppat.1009475.
Diversity of trypanosomes in humans and cattle in the HAT foci Mandoul and Maro, Southern Chad-A matter of concern for zoonotic potential?.
Ibrahim M, Weber J, Ngomtcho S, Signaboubo D, Berger P, Hassane H
PLoS Negl Trop Dis. 2021; 15(6):e0009323.
PMID: 34106914
PMC: 8224965.
DOI: 10.1371/journal.pntd.0009323.
Identification of positive and negative regulators in the stepwise developmental progression towards infectivity in Trypanosoma brucei.
Toh J, Nkouawa A, Sanchez S, Shi H, Kolev N, Tschudi C
Sci Rep. 2021; 11(1):5755.
PMID: 33707699
PMC: 7952579.
DOI: 10.1038/s41598-021-85225-2.
Gene co-expression network analysis of Trypanosoma brucei in tsetse fly vector.
Mwangi K, Macharia R, Bargul J
Parasit Vectors. 2021; 14(1):74.
PMID: 33482903
PMC: 7821691.
DOI: 10.1186/s13071-021-04597-6.
Tsetse blood-meal sources, endosymbionts and trypanosome-associations in the Maasai Mara National Reserve, a wildlife-human-livestock interface.
Makhulu E, Villinger J, Owino Adunga V, Jeneby M, Kimathi E, Mararo E
PLoS Negl Trop Dis. 2021; 15(1):e0008267.
PMID: 33406097
PMC: 7822626.
DOI: 10.1371/journal.pntd.0008267.
Cell-based and multi-omics profiling reveals dynamic metabolic repurposing of mitochondria to drive developmental progression of Trypanosoma brucei.
Dolezelova E, Kunzova M, Dejung M, Levin M, Panicucci B, Regnault C
PLoS Biol. 2020; 18(6):e3000741.
PMID: 32520929
PMC: 7307792.
DOI: 10.1371/journal.pbio.3000741.
Genetic diversity of trypanosome species in tsetse flies (Glossina spp.) in Nigeria.
Weber J, Ngomtcho S, Shaida S, Chechet G, Gbem T, Nok J
Parasit Vectors. 2019; 12(1):481.
PMID: 31610794
PMC: 6792248.
DOI: 10.1186/s13071-019-3718-y.
Tsetse peritrophic matrix influences for trypanosome transmission.
Aksoy S
J Insect Physiol. 2019; 118:103919.
PMID: 31425686
PMC: 6853167.
DOI: 10.1016/j.jinsphys.2019.103919.
Dramatic changes in gene expression in different forms of Crithidia fasciculata reveal potential mechanisms for insect-specific adhesion in kinetoplastid parasites.
Filosa J, Berry C, Ruthel G, Beverley S, Warren W, Tomlinson C
PLoS Negl Trop Dis. 2019; 13(7):e0007570.
PMID: 31356610
PMC: 6687205.
DOI: 10.1371/journal.pntd.0007570.