» Articles » PMID: 23467091

Mesoporous TiO2 Single Crystals Delivering Enhanced Mobility and Optoelectronic Device Performance

Overview
Journal Nature
Specialty Science
Date 2013 Mar 8
PMID 23467091
Citations 70
Authors
Affiliations
Soon will be listed here.
Abstract

Mesoporous ceramics and semiconductors enable low-cost solar power, solar fuel, (photo)catalyst and electrical energy storage technologies. State-of-the-art, printable high-surface-area electrodes are fabricated from thermally sintered pre-formed nanocrystals. Mesoporosity provides the desired highly accessible surfaces but many applications also demand long-range electronic connectivity and structural coherence. A mesoporous single-crystal (MSC) semiconductor can meet both criteria. Here we demonstrate a general synthetic method of growing semiconductor MSCs of anatase TiO2 based on seeded nucleation and growth inside a mesoporous template immersed in a dilute reaction solution. We show that both isolated MSCs and ensembles incorporated into films have substantially higher conductivities and electron mobilities than does nanocrystalline TiO2. Conventional nanocrystals, unlike MSCs, require in-film thermal sintering to reinforce electronic contact between particles, thus increasing fabrication cost, limiting the use of flexible substrates and precluding, for instance, multijunction solar cell processing. Using MSC films processed entirely below 150 °C, we have fabricated all-solid-state, low-temperature sensitized solar cells that have 7.3 per cent efficiency, the highest efficiency yet reported. These high-surface-area anatase single crystals will find application in many different technologies, and this generic synthetic strategy extends the possibility of mesoporous single-crystal growth to a range of functional ceramics and semiconductors.

Citing Articles

CsAgBiBr and related Halide double perovskite porous single crystals.

Pradeepkumar M, Kathirvel A, Ghosh S, Sudakar C Sci Rep. 2025; 15(1):843.

PMID: 39755876 PMC: 11700190. DOI: 10.1038/s41598-025-85326-2.


Micro-homogeneity of lateral energy landscapes governs the performance in perovskite solar cells.

Shi P, Ding B, Jin D, Oner M, Zhang X, Tian Y Nat Commun. 2024; 15(1):9703.

PMID: 39516477 PMC: 11549436. DOI: 10.1038/s41467-024-53953-4.


Nanoscale Graded Nitrogen-Doping of TiO via Pulsed Laser Deposition for Enhancing Charge Transfer in Perovskite Solar Cells.

Jung Y, Yoon K, Park J, Choi H, Kim S, Kwak H Small. 2024; 20(52):e2405229.

PMID: 39206602 PMC: 11673560. DOI: 10.1002/smll.202405229.


Two-dimensional single-crystalline mesoporous high-entropy oxide nanoplates for efficient electrochemical biomass upgrading.

Wang Y, He H, Lv H, Jia F, Liu B Nat Commun. 2024; 15(1):6761.

PMID: 39117608 PMC: 11310307. DOI: 10.1038/s41467-024-50721-2.


Highly oriented MAPbI crystals for efficient hole-conductor-free printable mesoscopic perovskite solar cells.

Liu S, Zhang D, Sheng Y, Zhang W, Qin Z, Qin M Fundam Res. 2024; 2(2):276-283.

PMID: 38933159 PMC: 11197800. DOI: 10.1016/j.fmre.2021.09.008.


References
1.
Yella A, Lee H, Tsao H, Yi C, Chandiran A, Nazeeruddin M . Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science. 2011; 334(6056):629-34. DOI: 10.1126/science.1209688. View

2.
Bian Z, Zhu J, Wen J, Cao F, Huo Y, Qian X . Single-crystal-like titania mesocages. Angew Chem Int Ed Engl. 2011; 50(5):1105-8. DOI: 10.1002/anie.201004972. View

3.
Docampo P, Guldin S, Steiner U, Snaith H . Charge Transport Limitations in Self-Assembled TiO2 Photoanodes for Dye-Sensitized Solar Cells. J Phys Chem Lett. 2015; 4(5):698-703. DOI: 10.1021/jz400084n. View

4.
Li D, Zhou H, Honma I . Design and synthesis of self-ordered mesoporous nanocomposite through controlled in-situ crystallization. Nat Mater. 2004; 3(1):65-72. DOI: 10.1038/nmat1043. View

5.
Weickert J, Dunbar R, Hesse H, Wiedemann W, Schmidt-Mende L . Nanostructured organic and hybrid solar cells. Adv Mater. 2011; 23(16):1810-28. DOI: 10.1002/adma.201003991. View