Agarwal P, Soni R, Kaur P, Madan A, Mishra R, Pandey J
Front Microbiol. 2022; 13:939347.
PMID: 35903468
PMC: 9325326.
DOI: 10.3389/fmicb.2022.939347.
Koller M
Bioengineering (Basel). 2022; 9(7).
PMID: 35877379
PMC: 9312071.
DOI: 10.3390/bioengineering9070328.
Barkhuizen J, Coetzee G, van Rensburg E, Gorgens J
Bioprocess Biosyst Eng. 2021; 44(12):2655-2665.
PMID: 34499236
DOI: 10.1007/s00449-021-02634-3.
Vigneswari S, Noor M, Amelia T, Balakrishnan K, Adnan A, Bhubalan K
Life (Basel). 2021; 11(8).
PMID: 34440551
PMC: 8398495.
DOI: 10.3390/life11080807.
Bedade D, Edson C, Gross R
Molecules. 2021; 26(11).
PMID: 34200447
PMC: 8201374.
DOI: 10.3390/molecules26113463.
Substrate-Flexible Two-Stage Fed-Batch Cultivations for the Production of the PHA Copolymer P(HB--HHx) With Re2058/pCB113.
Santolin L, Waldburger S, Neubauer P, Riedel S
Front Bioeng Biotechnol. 2021; 9:623890.
PMID: 33829008
PMC: 8020817.
DOI: 10.3389/fbioe.2021.623890.
Recent advances in constructing artificial microbial consortia for the production of medium-chain-length polyhydroxyalkanoates.
Ai M, Zhu Y, Jia X
World J Microbiol Biotechnol. 2021; 37(1):2.
PMID: 33392870
DOI: 10.1007/s11274-020-02986-0.
Rheological Behavior of High Cell Density LS46 Cultures during Production of Medium Chain Length Polyhydroxyalkanoate (PHA) Polymers.
Blunt W, Gaugler M, Collet C, Sparling R, Gapes D, Levin D
Bioengineering (Basel). 2019; 6(4).
PMID: 31600906
PMC: 6956342.
DOI: 10.3390/bioengineering6040093.
Development of High Cell Density Cultivation Strategies for Improved Medium Chain Length Polyhydroxyalkanoate Productivity Using LS46.
Blunt W, Dartiailh C, Sparling R, Gapes D, Levin D, Cicek N
Bioengineering (Basel). 2019; 6(4).
PMID: 31561519
PMC: 6956024.
DOI: 10.3390/bioengineering6040089.
Bioreactor Operating Strategies for Improved Polyhydroxyalkanoate (PHA) Productivity.
Blunt W, Levin D, Cicek N
Polymers (Basel). 2019; 10(11).
PMID: 30961122
PMC: 6290639.
DOI: 10.3390/polym10111197.
Enhanced microbial lipid production by Cryptococcus albidus in the high-cell-density continuous cultivation with membrane cell recycling and two-stage nutrient limitation.
Fu R, Fei Q, Shang L, Brigham C, Chang H
J Ind Microbiol Biotechnol. 2018; 45(12):1045-1051.
PMID: 30218234
DOI: 10.1007/s10295-018-2081-x.
The role of dissolved oxygen content as a modulator of microbial polyhydroxyalkanoate synthesis.
Blunt W, Sparling R, Gapes D, Levin D, Cicek N
World J Microbiol Biotechnol. 2018; 34(8):106.
PMID: 29971506
DOI: 10.1007/s11274-018-2488-6.
Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production.
Kourmentza C, Placido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala H
Bioengineering (Basel). 2017; 4(2).
PMID: 28952534
PMC: 5590474.
DOI: 10.3390/bioengineering4020055.
A Review on Grafting of Biofibers for Biocomposites.
Wei L, McDonald A
Materials (Basel). 2017; 9(4).
PMID: 28773429
PMC: 5502996.
DOI: 10.3390/ma9040303.
Poly(3-hydroxybutyrate)/metribuzin formulations: characterization, controlled release properties, herbicidal activity, and effect on soil microorganisms.
Volova T, Zhila N, Kiselev E, Prudnikova S, Vinogradova O, Nikolaeva E
Environ Sci Pollut Res Int. 2016; 23(23):23936-23950.
PMID: 27628924
DOI: 10.1007/s11356-016-7636-7.
Microbubble assisted polyhydroxybutyrate production in Escherichia coli.
Inan K, Ay Sal F, Rahman A, Putman R, Agblevor F, Miller C
BMC Res Notes. 2016; 9:338.
PMID: 27393560
PMC: 4939048.
DOI: 10.1186/s13104-016-2145-9.
Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil.
Obruca S, Snajdar O, Svoboda Z, Marova I
World J Microbiol Biotechnol. 2013; 29(12):2417-28.
PMID: 23801326
DOI: 10.1007/s11274-013-1410-5.