» Articles » PMID: 23442969

Initial Recognition of a Cellodextrin Chain in the Cellulose-binding Tunnel May Affect Cellobiohydrolase Directional Specificity

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2013 Feb 28
PMID 23442969
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Cellobiohydrolases processively hydrolyze glycosidic linkages in individual polymer chains of cellulose microfibrils, and typically exhibit specificity for either the reducing or nonreducing end of cellulose. Here, we conduct molecular dynamics simulations and free energy calculations to examine the initial binding of a cellulose chain into the catalytic tunnel of the reducing-end-specific Family 7 cellobiohydrolase (Cel7A) from Hypocrea jecorina. In unrestrained simulations, the cellulose diffuses into the tunnel from the -7 to the -5 positions, and the associated free energy profiles exhibit no barriers for initial processivity. The comparison of the free energy profiles for different cellulose chain orientations show a thermodynamic preference for the reducing end, suggesting that the preferential initial binding may affect the directional specificity of the enzyme by impeding nonproductive (nonreducing end) binding. Finally, the Trp-40 at the tunnel entrance is shown with free energy calculations to have a significant effect on initial chain complexation in Cel7A.

Citing Articles

Molecular Details of Polyester Decrystallization via Molecular Simulation.

Lazarenko D, Schmidt G, Crowley M, Beckham G, Knott B Macromolecules. 2025; 58(4):1795-1803.

PMID: 40026450 PMC: 11866931. DOI: 10.1021/acs.macromol.4c02130.


Development of hybrid biomicroparticles: cellulose exposing functionalized fusion proteins.

Zebrowska J, Mucha P, Prusinowski M, Krefft D, Zylicz-Stachula A, Deptula M Microb Cell Fact. 2024; 23(1):81.

PMID: 38481305 PMC: 10938831. DOI: 10.1186/s12934-024-02344-x.


Efficient biomass saccharification using a novel cellobiohydrolase from for utilization in biofuel industry.

Zafar A, Aftab M, Asif A, Karadag A, Peng L, Celebioglu H RSC Adv. 2022; 11(16):9246-9261.

PMID: 35423428 PMC: 8695235. DOI: 10.1039/d1ra00545f.


Machine learning reveals sequence-function relationships in family 7 glycoside hydrolases.

Gado J, Harrison B, Sandgren M, Stahlberg J, Beckham G, Payne C J Biol Chem. 2021; 297(2):100931.

PMID: 34216620 PMC: 8329511. DOI: 10.1016/j.jbc.2021.100931.


Computing Cellulase Kinetics with a Two-Domain Linear Interaction Energy Approach.

Schaller K, Kari J, Molina G, Tidemand K, Borch K, Peters G ACS Omega. 2021; 6(2):1547-1555.

PMID: 33490814 PMC: 7818601. DOI: 10.1021/acsomega.0c05361.


References
1.
Koivula A, Reinikainen T, Ruohonen L, Valkeajarvi A, Claeyssens M, Teleman O . The active site of Trichoderma reesei cellobiohydrolase II: the role of tyrosine 169. Protein Eng. 1996; 9(8):691-9. DOI: 10.1093/protein/9.8.691. View

2.
MacKerell Jr A, Feig M, Brooks 3rd C . Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem. 2004; 25(11):1400-15. DOI: 10.1002/jcc.20065. View

3.
Beckham G, Matthews J, Bomble Y, Bu L, Adney W, Himmel M . Identification of amino acids responsible for processivity in a Family 1 carbohydrate-binding module from a fungal cellulase. J Phys Chem B. 2010; 114(3):1447-53. DOI: 10.1021/jp908810a. View

4.
Divne C, Stahlberg J, Teeri T, Jones T . High-resolution crystal structures reveal how a cellulose chain is bound in the 50 A long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol. 1998; 275(2):309-25. DOI: 10.1006/jmbi.1997.1437. View

5.
Phillips J, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E . Scalable molecular dynamics with NAMD. J Comput Chem. 2005; 26(16):1781-802. PMC: 2486339. DOI: 10.1002/jcc.20289. View