» Articles » PMID: 23422665

GaAs Nanopillar-array Solar Cells Employing in Situ Surface Passivation

Overview
Journal Nat Commun
Specialty Biology
Date 2013 Feb 21
PMID 23422665
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Arrays of III-V direct-bandgap semiconductor nanopillars represent promising photovoltaic candidates due to their inherent high optical absorption coefficients and minimized reflection arising from light trapping, efficient charge collection in the radial direction and the ability to synthesize them on low-cost platforms. However, the increased surface area results in surface states that hamper the power conversion efficiency. Here, we report the first demonstration of GaAs nanopillar-array photovoltaics employing epitaxial passivation with air mass 1.5 global power conversion efficiencies of 6.63%. High-bandgap epitaxial InGaP shells are grown in situ and cap the radial p-n junctions to alleviate surface-state effects. Under light, the photovoltaic devices exhibit open-circuit voltages of 0.44 V, short-circuit current densities of 24.3 mA cm(-2) and fill factors of 62% with high external quantum efficiencies >70% across the spectral regime of interest. A novel titanium/indium tin oxide annealed alloy is exploited as transparent ohmic anode.

Citing Articles

Direct on-Chip Optical Communication between Nano Optoelectronic Devices.

Flodgren V, Das A, Sestoft J, Alcer D, Jensen T, Jeddi H ACS Photonics. 2025; 12(2):655-665.

PMID: 39989931 PMC: 11844251. DOI: 10.1021/acsphotonics.4c01375.


Unveiling Variations in Electronic and Atomic Structures Due to Nanoscale Wurtzite and Zinc Blende Phase Separation in GaAs Nanowires.

Zeng L, Olsson E Nano Lett. 2024; 24(22):6644-6650.

PMID: 38767455 PMC: 11157649. DOI: 10.1021/acs.nanolett.4c01262.


Surface Passivation of III-V GaAs Nanopillars by Low-Frequency Plasma Deposition of Silicon Nitride for Active Nanophotonic Devices.

Jacob B, Camarneiro F, Borme J, Bondarchuk O, Nieder J, Romeira B ACS Appl Electron Mater. 2022; 4(7):3399-3410.

PMID: 36570334 PMC: 9778088. DOI: 10.1021/acsaelm.2c00195.


Long-Term Stability and Optoelectronic Performance Enhancement of InAsP Nanowires with an Ultrathin InP Passivation Layer.

Chen L, Adeyemo S, Fonseka H, Liu H, Kar S, Yang H Nano Lett. 2022; 22(8):3433-3439.

PMID: 35420433 PMC: 9097579. DOI: 10.1021/acs.nanolett.2c00805.


Enhancing the NIR Photocurrent in Single GaAs Nanowires with Radial p-i-n Junctions by Uniaxial Strain.

Holmer J, Zeng L, Kanne T, Krogstrup P, Nygard J, Olsson E Nano Lett. 2021; 21(21):9038-9043.

PMID: 34704766 PMC: 8587900. DOI: 10.1021/acs.nanolett.1c02468.


References
1.
Yao Y, Yao J, Narasimhan V, Ruan Z, Xie C, Fan S . Broadband light management using low-Q whispering gallery modes in spherical nanoshells. Nat Commun. 2012; 3:664. DOI: 10.1038/ncomms1664. View

2.
Cao L, White J, Park J, Schuller J, Clemens B, Brongersma M . Engineering light absorption in semiconductor nanowire devices. Nat Mater. 2009; 8(8):643-7. DOI: 10.1038/nmat2477. View

3.
Tajik N, Peng Z, Kuyanov P, LaPierre R . Sulfur passivation and contact methods for GaAs nanowire solar cells. Nanotechnology. 2011; 22(22):225402. DOI: 10.1088/0957-4484/22/22/225402. View

4.
Agrawal M, Peumans P . Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells. Opt Express. 2008; 16(8):5385-96. DOI: 10.1364/oe.16.005385. View

5.
Dan Y, Seo K, Takei K, Meza J, Javey A, Crozier K . Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires. Nano Lett. 2011; 11(6):2527-32. DOI: 10.1021/nl201179n. View