Ogura T, Shiraishi C
Cureus. 2025; 17(2):e78746.
PMID: 40070640
PMC: 11893214.
DOI: 10.7759/cureus.78746.
Nguyen J, Arian C, Tanna R, Cherel M, Layton M, White J
Clin Transl Sci. 2025; 18(2):e70120.
PMID: 39943692
PMC: 11821731.
DOI: 10.1111/cts.70120.
Zhou T, Jin T, Wang X, Wang L
PLoS One. 2025; 20(1):e0316021.
PMID: 39804836
PMC: 11730380.
DOI: 10.1371/journal.pone.0316021.
Chakraborty C, Bhattacharya M, Lee S, Wen Z, Lo Y
Mol Ther Nucleic Acids. 2024; 35(3):102295.
PMID: 39257717
PMC: 11386122.
DOI: 10.1016/j.omtn.2024.102295.
Wang Y, Yang Z, Yao Q
Commun Med (Lond). 2024; 4(1):59.
PMID: 38548835
PMC: 10978847.
DOI: 10.1038/s43856-024-00486-y.
screening for toxicity-modulating drug interactions identifies antagonism that protects against ototoxicity in zebrafish.
Bustad E, Mudrock E, Nilles E, Mcquate A, Bergado M, Gu A
Front Pharmacol. 2024; 15():1363545.
PMID: 38515847
PMC: 10955247.
DOI: 10.3389/fphar.2024.1363545.
Prediction of multiple types of drug interactions based on multi-scale fusion and dual-view fusion.
Pan D, Lu P, Wu Y, Kang L, Huang F, Lin K
Front Pharmacol. 2024; 15:1354540.
PMID: 38434701
PMC: 10904638.
DOI: 10.3389/fphar.2024.1354540.
Multimodal CNN-DDI: using multimodal CNN for drug to drug interaction associated events.
Asfand-E-Yar M, Hashir Q, Shah A, Malik H, Alourani A, Khalil W
Sci Rep. 2024; 14(1):4076.
PMID: 38374325
PMC: 10876630.
DOI: 10.1038/s41598-024-54409-x.
Update and Application of a Deep Learning Model for the Prediction of Interactions between Drugs Used by Patients with Multiple Sclerosis.
Hecker M, Frahm N, Zettl U
Pharmaceutics. 2024; 16(1).
PMID: 38276481
PMC: 10819178.
DOI: 10.3390/pharmaceutics16010003.
Biomedical Big Data Technologies, Applications, and Challenges for Precision Medicine: A Review.
Yang X, Huang K, Yang D, Zhao W, Zhou X
Glob Chall. 2024; 8(1):2300163.
PMID: 38223896
PMC: 10784210.
DOI: 10.1002/gch2.202300163.
Prevalence and factors associated with potential drug-drug interactions in prescriptions presented at private pharmacies in Mbarara city, southwestern Uganda.
Lule A, Delic O, Katunguka K, Muwonge F, Yadesa T
BMC Pharmacol Toxicol. 2024; 25(1):2.
PMID: 38167526
PMC: 10763418.
DOI: 10.1186/s40360-023-00719-1.
Multiple sampling schemes and deep learning improve active learning performance in drug-drug interaction information retrieval analysis from the literature.
Xie W, Fan K, Zhang S, Li L
J Biomed Semantics. 2023; 14(1):5.
PMID: 37248476
PMC: 10228061.
DOI: 10.1186/s13326-023-00287-7.
Randomized prospective trial to detect and distinguish between medication nonadherence, drug-drug interactions, and disease progression in chronic cardiometabolic disease.
Peabody J, Ganesan D, Valdenor C, Paculdo D, Schrecker J, Westerfield C
BMC Prim Care. 2023; 24(1):100.
PMID: 37061690
PMC: 10105436.
DOI: 10.1186/s12875-023-02042-4.
A Knowledge-Graph-Based Multimodal Deep Learning Framework for Identifying Drug-Drug Interactions.
Zhang J, Chen M, Liu J, Peng D, Dai Z, Zou X
Molecules. 2023; 28(3).
PMID: 36771157
PMC: 9919258.
DOI: 10.3390/molecules28031490.
Novel Method for Early Prediction of Clinically Significant Drug-Drug Interactions with a Machine Learning Algorithm Based on Risk Matrix Analysis in the NICU.
Yalcin N, Kasikci M, Celik H, Allegaert K, Demirkan K, Yigit S
J Clin Med. 2022; 11(16).
PMID: 36012954
PMC: 9410171.
DOI: 10.3390/jcm11164715.
BioChemDDI: Predicting Drug-Drug Interactions by Fusing Biochemical and Structural Information through a Self-Attention Mechanism.
Ren Z, Yu C, Li L, You Z, Pan J, Guan Y
Biology (Basel). 2022; 11(5).
PMID: 35625486
PMC: 9138786.
DOI: 10.3390/biology11050758.
Healthcare Costs Associated with Potentially Inappropriate Medication Prescribing Detected by Computer Algorithm Among Older Patients.
Pages A, Costa N, Mounie M, Cestac P, De Souto Barreto P, Rolland Y
Drugs Aging. 2022; 39(5):367-375.
PMID: 35606646
DOI: 10.1007/s40266-022-00938-x.
Drug-Drug Interactions Prediction Using Fingerprint Only.
Ran B, Chen L, Li M, Han Y, Dai Q
Comput Math Methods Med. 2022; 2022:7818480.
PMID: 35586666
PMC: 9110191.
DOI: 10.1155/2022/7818480.
Pattern Discovery from High-Order Drug-Drug Interaction Relations.
Chiang W, Schleyer T, Shen L, Li L, Ning X
J Healthc Inform Res. 2022; 2(3):272-304.
PMID: 35415408
PMC: 8982853.
DOI: 10.1007/s41666-018-0020-2.
CNN-DDI: a learning-based method for predicting drug-drug interactions using convolution neural networks.
Zhang C, Lu Y, Zang T
BMC Bioinformatics. 2022; 23(Suppl 1):88.
PMID: 35255808
PMC: 8902704.
DOI: 10.1186/s12859-022-04612-2.