Loughran G, Andreev D, Terenin I, Namy O, Mikl M, Yordanova M
Nat Struct Mol Biol. 2025; .
PMID: 40033152
DOI: 10.1038/s41594-025-01492-x.
Hernandez G, Garcia A, Weingarten-Gabbay S, Mishra R, Hussain T, Amiri M
Nucleic Acids Res. 2023; 52(3):1064-1079.
PMID: 38038264
PMC: 10853783.
DOI: 10.1093/nar/gkad1152.
Garcia V, Dial R, DeRisi J
Malar J. 2022; 21(1):15.
PMID: 34991611
PMC: 8739713.
DOI: 10.1186/s12936-021-04024-2.
Zhao X, Usdin K
Int J Mol Sci. 2021; 22(17).
PMID: 34502075
PMC: 8431139.
DOI: 10.3390/ijms22179167.
Zhang L, Liu W, Li J
Front Bioeng Biotechnol. 2020; 8:536.
PMID: 32626695
PMC: 7314905.
DOI: 10.3389/fbioe.2020.00536.
Non-AUG translation: a new start for protein synthesis in eukaryotes.
Kearse M, Wilusz J
Genes Dev. 2017; 31(17):1717-1731.
PMID: 28982758
PMC: 5666671.
DOI: 10.1101/gad.305250.117.
A reconstituted cell-free assay for the evaluation of the intrinsic activity of purified human ribosomes.
Penzo M, Carnicelli D, Montanaro L, Brigotti M
Nat Protoc. 2016; 11(7):1309-25.
PMID: 27336708
DOI: 10.1038/nprot.2016.072.
An eEF1A1 truncation encoded by PTI-1 exerts its oncogenic effect inside the nucleus.
Dahl L, Corydon T, Rankel L, Nielsen K, Fuchtbauer E, Knudsen C
Cancer Cell Int. 2014; 14(1):17.
PMID: 24571548
PMC: 3941776.
DOI: 10.1186/1475-2867-14-17.
Functional reconstitution of human eukaryotic translation initiation factor 3 (eIF3).
Sun C, Todorovic A, Querol-Audi J, Bai Y, Villa N, Snyder M
Proc Natl Acad Sci U S A. 2011; 108(51):20473-8.
PMID: 22135459
PMC: 3251073.
DOI: 10.1073/pnas.1116821108.
Optimized high-throughput screen for hepatitis C virus translation inhibitors.
Berry K, Peng B, Koditek D, Beeman D, Pagratis N, Perry J
J Biomol Screen. 2011; 16(2):211-20.
PMID: 21297107
PMC: 3260011.
DOI: 10.1177/1087057110391665.
Initiation of translation of the FMR1 mRNA Occurs predominantly through 5'-end-dependent ribosomal scanning.
Ludwig A, Hershey J, Hagerman P
J Mol Biol. 2011; 407(1):21-34.
PMID: 21237174
PMC: 3046292.
DOI: 10.1016/j.jmb.2011.01.006.
The HCV IRES pseudoknot positions the initiation codon on the 40S ribosomal subunit.
Berry K, Waghray S, Doudna J
RNA. 2010; 16(8):1559-69.
PMID: 20584896
PMC: 2905755.
DOI: 10.1261/rna.2197210.
Accessibility of 18S rRNA in human 40S subunits and 80S ribosomes at physiological magnesium ion concentrations--implications for the study of ribosome dynamics.
Shenvi C, Dong K, Friedman E, Hanson J, Cate J
RNA. 2005; 11(12):1898-908.
PMID: 16314459
PMC: 1370877.
DOI: 10.1261/rna.2192805.
Pushing the limits of the scanning mechanism for initiation of translation.
Kozak M
Gene. 2002; 299(1-2):1-34.
PMID: 12459250
PMC: 7126118.
DOI: 10.1016/s0378-1119(02)01056-9.
Constraints on reinitiation of translation in mammals.
Kozak M
Nucleic Acids Res. 2002; 29(24):5226-32.
PMID: 11812856
PMC: 97554.
DOI: 10.1093/nar/29.24.5226.
Ribosomal pausing and scanning arrest as mechanisms of translational regulation from cap-distal iron-responsive elements.
Paraskeva E, Gray N, Schlager B, Wehr K, Hentze M
Mol Cell Biol. 1998; 19(1):807-16.
PMID: 9858603
PMC: 83937.
DOI: 10.1128/MCB.19.1.807.
Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6.
Kozak M
EMBO J. 1997; 16(9):2482-92.
PMID: 9171361
PMC: 1169848.
DOI: 10.1093/emboj/16.9.2482.
General RNA binding proteins render translation cap dependent.
Svitkin Y, Ovchinnikov L, Dreyfuss G, Sonenberg N
EMBO J. 1996; 15(24):7147-55.
PMID: 9003790
PMC: 452541.
In vitro translation of apple chlorotic leaf spot virus (ACLSV) RNA.
Candresse T, German S, Lanneau M, Dunez J
Arch Virol. 1996; 141(11):2031-43.
PMID: 8973521
DOI: 10.1007/BF01718213.
Interpreting cDNA sequences: some insights from studies on translation.
Kozak M
Mamm Genome. 1996; 7(8):563-74.
PMID: 8679005
DOI: 10.1007/s003359900171.