» Articles » PMID: 23390576

High Volumetric Power Density, Non-enzymatic, Glucose Fuel Cells

Overview
Journal Sci Rep
Specialty Science
Date 2013 Feb 8
PMID 23390576
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

The development of new implantable medical devices has been limited in the past by slow advances in lithium battery technology. Non-enzymatic glucose fuel cells are promising replacement candidates for lithium batteries because of good long-term stability and adequate power density. The devices developed to date however use an "oxygen depletion design" whereby the electrodes are stacked on top of each other leading to low volumetric power density and complicated fabrication protocols. Here we have developed a novel single-layer fuel cell with good performance (2 μW cm⁻²) and stability that can be integrated directly as a coating layer on large implantable devices, or stacked to obtain a high volumetric power density (over 16 μW cm⁻³). This represents the first demonstration of a low volume non-enzymatic fuel cell stack with high power density, greatly increasing the range of applications for non-enzymatic glucose fuel cells.

Citing Articles

Glucose-based biofuel cells and their applications in medical implants: A review.

Chakraborty I, Olsson R, Andersson R, Pandey A Heliyon. 2024; 10(13):e33615.

PMID: 39040310 PMC: 11261083. DOI: 10.1016/j.heliyon.2024.e33615.


Soft-Template-Based Manufacturing of Gold Nanostructures for Energy and Sensing Applications.

Maiti T, Liu W, Niyazi A, Squires A, Chattpoadhyay S, Di Lorenzo M Biosensors (Basel). 2024; 14(6).

PMID: 38920593 PMC: 11202093. DOI: 10.3390/bios14060289.


Biomimetic Exogenous "Tissue Batteries" as Artificial Power Sources for Implantable Bioelectronic Devices Manufacturing.

Yue O, Wang X, Xie L, Bai Z, Zou X, Liu X Adv Sci (Weinh). 2024; 11(11):e2307369.

PMID: 38196276 PMC: 10953594. DOI: 10.1002/advs.202307369.


Effects of the Anode Diffusion Layer on the Performance of a Nonenzymatic Electrochemical Glucose Fuel Cell with a Proton Exchange Membrane.

Cha H, Kwon O, Kim J, Choi H, Yoo H, Kim H ACS Omega. 2021; 6(50):34752-34762.

PMID: 34963958 PMC: 8697377. DOI: 10.1021/acsomega.1c05199.


Simple Yeast-Direct Catalytic Fuel Cell Bio-Device: Analytical Results and Energetic Properties.

Tomassetti M, DellAglio E, Castrucci M, Sammartino M, Campanella L, Di Natale C Biosensors (Basel). 2021; 11(2).

PMID: 33670116 PMC: 7916892. DOI: 10.3390/bios11020045.


References
1.
Justin G, Zhang Y, Sun M, Sclabassi R . Biofuel cells: a possible power source for implantable electronic devices. Conf Proc IEEE Eng Med Biol Soc. 2007; 2004:4096-9. DOI: 10.1109/IEMBS.2004.1404143. View

2.
Grill W, Wei X . High efficiency electrodes for deep brain stimulation. Annu Int Conf IEEE Eng Med Biol Soc. 2009; 2009:3298-301. PMC: 3683652. DOI: 10.1109/IEMBS.2009.5333774. View

3.
Sharma T, Hu Y, Stoller M, Feldman M, Ruoff R, Ferrari M . Mesoporous silica as a membrane for ultra-thin implantable direct glucose fuel cells. Lab Chip. 2011; 11(14):2460-5. DOI: 10.1039/c1lc20119k. View

4.
Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellissier A, Boucher F . A glucose biofuel cell implanted in rats. PLoS One. 2010; 5(5):e10476. PMC: 2864295. DOI: 10.1371/journal.pone.0010476. View

5.
Halamkova L, Halamek J, Bocharova V, Szczupak A, Alfonta L, Katz E . Implanted biofuel cell operating in a living snail. J Am Chem Soc. 2012; 134(11):5040-3. DOI: 10.1021/ja211714w. View