» Articles » PMID: 23389035

X-ray Crystal Structure of Escherichia Coli RNA Polymerase σ70 Holoenzyme

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2013 Feb 8
PMID 23389035
Citations 114
Authors
Affiliations
Soon will be listed here.
Abstract

Escherichia coli RNA polymerase (RNAP) is the most studied bacterial RNAP and has been used as the model RNAP for screening and evaluating potential RNAP-targeting antibiotics. However, the x-ray crystal structure of E. coli RNAP has been limited to individual domains. Here, I report the x-ray structure of the E. coli RNAP σ(70) holoenzyme, which shows σ region 1.1 (σ1.1) and the α subunit C-terminal domain for the first time in the context of an intact RNAP. σ1.1 is positioned at the RNAP DNA-binding channel and completely blocks DNA entry to the RNAP active site. The structure reveals that σ1.1 contains a basic patch on its surface, which may play an important role in DNA interaction to facilitate open promoter complex formation. The α subunit C-terminal domain is positioned next to σ domain 4 with a fully stretched linker between the N- and C-terminal domains. E. coli RNAP crystals can be prepared from a convenient overexpression system, allowing further structural studies of bacterial RNAP mutants, including functionally deficient and antibiotic-resistant RNAPs.

Citing Articles

Evidence for a compact σ conformation and .

Joron K, Zamel J, Kalisman N, Lerner E iScience. 2024; 27(6):110140.

PMID: 38957792 PMC: 11217687. DOI: 10.1016/j.isci.2024.110140.


Structural basis of promoter recognition by Staphylococcus aureus RNA polymerase.

Yuan L, Liu Q, Xu L, Wu B, Feng Y Nat Commun. 2024; 15(1):4850.

PMID: 38844782 PMC: 11156646. DOI: 10.1038/s41467-024-49229-6.


Design of a tunable bacterial gene expression system using engineered σ factors.

Patel T, Dinda A, Mahesh S, Nadig S, Reddy N, Gopal B Appl Environ Microbiol. 2024; 90(5):e0002124.

PMID: 38606981 PMC: 11107172. DOI: 10.1128/aem.00021-24.


A cellular platform for production of C monomers.

Davis M, Yu V, Fu B, Wen M, Koleski E, Silverman J Chem Sci. 2023; 14(42):11718-11726.

PMID: 37920356 PMC: 10619544. DOI: 10.1039/d3sc02773b.


Structural Insight into the Mechanism of σ32-Mediated Transcription Initiation of Bacterial RNA Polymerase.

Lu Q, Chen T, Wang J, Wang F, Ye W, Ma L Biomolecules. 2023; 13(5).

PMID: 37238608 PMC: 10216364. DOI: 10.3390/biom13050738.


References
1.
Ross W, Schneider D, Paul B, Mertens A, Gourse R . An intersubunit contact stimulating transcription initiation by E coli RNA polymerase: interaction of the alpha C-terminal domain and sigma region 4. Genes Dev. 2003; 17(10):1293-307. PMC: 196054. DOI: 10.1101/gad.1079403. View

2.
Vassylyev D, Vassylyeva M, Perederina A, Tahirov T, Artsimovitch I . Structural basis for transcription elongation by bacterial RNA polymerase. Nature. 2007; 448(7150):157-62. DOI: 10.1038/nature05932. View

3.
Jeon Y, Negishi T, Shirakawa M, Yamazaki T, Fujita N, Ishihama A . Solution structure of the activator contact domain of the RNA polymerase alpha subunit. Science. 1995; 270(5241):1495-7. DOI: 10.1126/science.270.5241.1495. View

4.
Mathew R, Chatterji D . The evolving story of the omega subunit of bacterial RNA polymerase. Trends Microbiol. 2006; 14(10):450-5. DOI: 10.1016/j.tim.2006.08.002. View

5.
Murakami K, Masuda S, Campbell E, Muzzin O, Darst S . Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science. 2002; 296(5571):1285-90. DOI: 10.1126/science.1069595. View