» Articles » PMID: 23381612

Predicting the Need for Blood Transfusion in Patients with Hip Fractures

Overview
Journal Int Orthop
Specialty Orthopedics
Date 2013 Feb 6
PMID 23381612
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: The need for perioperative blood management measures aimed at improving patient outcomes and reducing allogenic blood transfusion (ABT) is increasingly recognised. Our study aim is to create an algorithm to predict and manage the need for blood transfusion in patients with hip fractures.

Methods: We retrospectively assessed 1,484 patients with hip fractures and analysed the probability of receiving an ABT within 72 hours of admission. Univariate, multiple logistic regression analysis and a probability algorithm for predicting the need for blood transfusion on the basis of independent multivariate predictors were used.

Results: Significant predictors for ABT were: older age; lower haemoglobin on admission; female gender; type of surgical implant (cephalomedullary nail and dynamic hip screw more than hemiarthroplasty); and a shorter wait time from admission to surgery. A regression model algorithm correctly predicted the need for an ABT in 73 % of the cases.

Conclusion: An algorithm and a simple clinical tool were devised to predict and manage the need for a blood transfusion within 72 hours of admission in patients with hip fractures.

Citing Articles

Perioperative blood management programme in Jehovah's witnesses undergoing total knee arthroplasty: clinical results and cost-benefit analysis.

Vicenti G, Solarino G, Zaccari D, Bizzoca D, Delmedico M, Carrozzo M Orthop Rev (Pavia). 2025; 14(5):87746.

PMID: 39949379 PMC: 11823268. DOI: 10.52965/001c.87746.


Comparison of Hemiarthroplasty, total hip arthroplasty, and internal fixation for hip fractures in patients over eighty years of age: factors affecting mortality: a nationwide cohort study of fifty three thousand, four hundred and ninety five....

Uzel K, Birinci M, Hakyemez O, Bostanci B, Bingol I, Oktem U Int Orthop. 2025; 49(3):729-736.

PMID: 39903258 PMC: 11889005. DOI: 10.1007/s00264-025-06412-8.


An explainable and supervised machine learning model for prediction of red blood cell transfusion in patients during hip fracture surgery.

Zhou Y, Wang S, Wu Z, Chen W, Yang D, Chen C BMC Anesthesiol. 2024; 24(1):467.

PMID: 39702008 PMC: 11656766. DOI: 10.1186/s12871-024-02832-y.


Robust Meta-Model for Predicting the Likelihood of Receiving Blood Transfusion in Non-traumatic Intensive Care Unit Patients.

Rafiei A, Moore R, Choudhary T, Marshall C, Smith G, Roback J Health Data Sci. 2024; 4:0197.

PMID: 39507297 PMC: 11538953. DOI: 10.34133/hds.0197.


Mapping the landscape of machine learning models used for predicting transfusions in surgical procedures: a scoping review.

Duranteau O, Blanchard F, Popoff B, van Etten-Jamaludin F, Tuna T, Preckel B BMC Med Inform Decis Mak. 2024; 24(1):312.

PMID: 39456049 PMC: 11515354. DOI: 10.1186/s12911-024-02729-3.


References
1.
Khan A, Mushtaq N, Giannakas K, Sochart D, Andrews J . Cross-match protocols for femoral neck fractures--finding one that can work. Ann R Coll Surg Engl. 2004; 86(1):11-4. PMC: 1964008. DOI: 10.1308/003588404772614614. View

2.
Young S, Marsh D, Akhavani M, Walker C, Skinner J . Attitudes to blood transfusion post arthroplasty surgery in the United Kingdom: a national survey. Int Orthop. 2007; 32(3):325-9. PMC: 2323427. DOI: 10.1007/s00264-007-0330-0. View

3.
Carson J, Terrin M, Noveck H, Sanders D, Chaitman B, Rhoads G . Liberal or restrictive transfusion in high-risk patients after hip surgery. N Engl J Med. 2011; 365(26):2453-62. PMC: 3268062. DOI: 10.1056/NEJMoa1012452. View

4.
Morritt D, Morritt A, Kelley S, Stone M . Blood ordering protocol based on proposed surgical implant in fractured neck of femur patients. Ann R Coll Surg Engl. 2005; 87(6):445-8. PMC: 1964110. DOI: 10.1308/003588405X71036. View

5.
Carson J, Hill S, Carless P, Hebert P, Henry D . Transfusion triggers: a systematic review of the literature. Transfus Med Rev. 2002; 16(3):187-99. DOI: 10.1053/tmrv.2002.33461. View