» Articles » PMID: 23368710

The Impact of Functionalization on the Stability, Work Function, and Photoluminescence of Reduced Graphene Oxide

Overview
Journal ACS Nano
Specialty Biotechnology
Date 2013 Feb 2
PMID 23368710
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

Reduced graphene oxide (rGO) is a promising material for a variety of thin-film optoelectronic applications. Two main barriers to its widespread use are the lack of (1) fabrication protocols leading to tailored functionalization of the graphene sheet with oxygen-containing chemical groups, and (2) understanding of the impact of such functional groups on the stability and on the optical and electronic properties of rGO. We carry out classical molecular dynamics and density functional theory calculations on a large set of realistic rGO structures to decompose the effects of different functional groups on the stability, work function, and photoluminescence. Our calculations indicate the metastable nature of carbonyl-rich rGO and its favorable transformation to hydroxyl-rich rGO at room temperature via carbonyl-to-hydroxyl conversion reactions near carbon vacancies and holes. We demonstrate a significant tunability in the work function of rGO up to 2.5 eV by altering the composition of oxygen-containing functional groups for a fixed oxygen concentration, and of the photoluminescence emission by modulating the fraction of epoxy and carbonyl groups. Taken together, our results guide the application of tailored rGO structures in devices for optoelectronics and renewable energy.

Citing Articles

Development of novel reduced graphene oxide/metalloporphyrin nanocomposite with photocatalytic and antimicrobial activity for potential wastewater treatment and medical applications.

El-Khawaga A, Tantawy H, Elsayed M, El-Mageed A Sci Rep. 2024; 14(1):27916.

PMID: 39537746 PMC: 11561097. DOI: 10.1038/s41598-024-77734-7.


Accelerated First-Principles Exploration of Structure and Reactivity in Graphene Oxide.

El-Machachi Z, Frantzov D, Nijamudheen A, Zarrouk T, Caro M, Deringer V Angew Chem Int Ed Engl. 2024; 63(52):e202410088.

PMID: 39133826 PMC: 11656143. DOI: 10.1002/anie.202410088.


Reduced Graphene Oxide Coating LiFePO Composite Cathodes for Advanced Lithium-Ion Battery Applications.

Zhang Q, Zhou Y, Tong Y, Chi Y, Liu R, Dai C Int J Mol Sci. 2023; 24(24).

PMID: 38139376 PMC: 10743949. DOI: 10.3390/ijms242417549.


Graphene-based chemiresistive gas sensors.

Recum P, Hirsch T Nanoscale Adv. 2023; 6(1):11-31.

PMID: 38125587 PMC: 10729924. DOI: 10.1039/d3na00423f.


Enhancing Cementitious Composites with Functionalized Graphene Oxide-Based Materials: Surface Chemistry and Mechanisms.

Huang C, Lin Y, Chung J, Chiu H, Yeh N, Chang S Int J Mol Sci. 2023; 24(13).

PMID: 37445640 PMC: 10341748. DOI: 10.3390/ijms241310461.