Rodriguez-Martin D, Perez-Lopez C
Front Neurol. 2025; 15:1470928.
PMID: 39764292
PMC: 11700807.
DOI: 10.3389/fneur.2024.1470928.
Rodriguez-Martin D, Perez-Lopez C
Rev Neurol. 2024; 79(8):229-237.
PMID: 39404037
PMC: 11605906.
DOI: 10.33588/rn.7908.2024253.
Jafleh E, Alnaqbi F, Almaeeni H, Faqeeh S, Alzaabi M, Al Zaman K
Cureus. 2024; 16(9):e68921.
PMID: 39381470
PMC: 11461032.
DOI: 10.7759/cureus.68921.
Moreau C, Rouaud T, Grabli D, Benatru I, Remy P, Marques A
NPJ Parkinsons Dis. 2023; 9(1):153.
PMID: 37919332
PMC: 10622581.
DOI: 10.1038/s41531-023-00585-y.
Bounsall K, Milne-Ives M, Hall A, Carroll C, Meinert E
JMIR Res Protoc. 2023; 12:e46581.
PMID: 37314853
PMC: 10337354.
DOI: 10.2196/46581.
Automatic Assessments of Parkinsonian Gait with Wearable Sensors for Human Assistive Systems.
Han Y, Liu X, Zhang N, Zhang X, Zhang B, Wang S
Sensors (Basel). 2023; 23(4).
PMID: 36850705
PMC: 9959760.
DOI: 10.3390/s23042104.
A New Paradigm in Parkinson's Disease Evaluation With Wearable Medical Devices: A Review of STAT-ON.
Rodriguez-Martin D, Cabestany J, Perez-Lopez C, Pie M, Calvet J, Sama A
Front Neurol. 2022; 13:912343.
PMID: 35720090
PMC: 9202426.
DOI: 10.3389/fneur.2022.912343.
Smartphone-Based Estimation of Item 3.8 of the MDS-UPDRS-III for Assessing Leg Agility in People With Parkinson's Disease.
Borzi L, Varrecchia M, Sibille S, Olmo G, Artusi C, Fabbri M
IEEE Open J Eng Med Biol. 2022; 1:140-147.
PMID: 35402940
PMC: 8975117.
DOI: 10.1109/OJEMB.2020.2993463.
Co-evolution of machine learning and digital technologies to improve monitoring of Parkinson's disease motor symptoms.
Chandrabhatla A, Pomeraniec I, Ksendzovsky A
NPJ Digit Med. 2022; 5(1):32.
PMID: 35304579
PMC: 8933519.
DOI: 10.1038/s41746-022-00568-y.
Evaluation of Wearable Sensor Devices in Parkinson's Disease: A Review of Current Status and Future Prospects.
Lu R, Xu Y, Li X, Fan Y, Zeng W, Tan Y
Parkinsons Dis. 2020; 2020:4693019.
PMID: 33029343
PMC: 7530475.
DOI: 10.1155/2020/4693019.
An Integrated Multi-Sensor Approach for the Remote Monitoring of Parkinson's Disease.
Albani G, Ferraris C, Nerino R, Chimienti A, Pettiti G, Parisi F
Sensors (Basel). 2019; 19(21).
PMID: 31684020
PMC: 6864792.
DOI: 10.3390/s19214764.
Using wearables to assess bradykinesia and rigidity in patients with Parkinson's disease: a focused, narrative review of the literature.
Teshuva I, Hillel I, Gazit E, Giladi N, Mirelman A, Hausdorff J
J Neural Transm (Vienna). 2019; 126(6):699-710.
PMID: 31115669
DOI: 10.1007/s00702-019-02017-9.
Vision-based assessment of parkinsonism and levodopa-induced dyskinesia with pose estimation.
Li M, Mestre T, Fox S, Taati B
J Neuroeng Rehabil. 2018; 15(1):97.
PMID: 30400914
PMC: 6219082.
DOI: 10.1186/s12984-018-0446-z.
Computer model for leg agility quantification and assessment for Parkinson's disease patients.
Ornelas-Vences C, Sanchez-Fernandez L, Sanchez-Perez L, Martinez-Hernandez J
Med Biol Eng Comput. 2018; 57(2):463-476.
PMID: 30215213
DOI: 10.1007/s11517-018-1894-0.
Technologies Assessing Limb Bradykinesia in Parkinson's Disease.
Hasan H, Athauda D, Foltynie T, Noyce A
J Parkinsons Dis. 2017; 7(1):65-77.
PMID: 28222539
PMC: 5302048.
DOI: 10.3233/JPD-160878.
A Validation Study of a Smartphone-Based Finger Tapping Application for Quantitative Assessment of Bradykinesia in Parkinson's Disease.
Lee C, Kang S, Hong S, Ma H, Lee U, Kim Y
PLoS One. 2016; 11(7):e0158852.
PMID: 27467066
PMC: 4965104.
DOI: 10.1371/journal.pone.0158852.
Analysis and Visualization of 3D Motion Data for UPDRS Rating of Patients with Parkinson's Disease.
Piro N, Piro L, Kassubek J, Blechschmidt-Trapp R
Sensors (Basel). 2016; 16(6).
PMID: 27338400
PMC: 4934355.
DOI: 10.3390/s16060930.
Quantitative assessment of parkinsonian bradykinesia based on an inertial measurement unit.
Dai H, Lin H, Lueth T
Biomed Eng Online. 2015; 14:68.
PMID: 26164814
PMC: 4499439.
DOI: 10.1186/s12938-015-0067-8.
A simple and inexpensive test-rig for evaluating the performance of motion sensors used in movement disorders research.
Perera T, Yohanandan S, McDermott H
Med Biol Eng Comput. 2015; 54(2-3):333-9.
PMID: 26018757
DOI: 10.1007/s11517-015-1314-7.
Telemonitoring of patients with Parkinson's disease using inertia sensors.
Piro N, Baumann L, Tengler M, Piro L, Blechschmidt-Trapp R
Appl Clin Inform. 2014; 5(2):503-11.
PMID: 25024764
PMC: 4081751.
DOI: 10.4338/ACI-2014-04-RA-0046.