» Articles » PMID: 23349002

Simultaneous Prediction of Protein Secondary Structure and Transmembrane Spans

Overview
Journal Proteins
Date 2013 Jan 26
PMID 23349002
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

Prediction of transmembrane spans and secondary structure from the protein sequence is generally the first step in the structural characterization of (membrane) proteins. Preference of a stretch of amino acids in a protein to form secondary structure and being placed in the membrane are correlated. Nevertheless, current methods predict either secondary structure or individual transmembrane states. We introduce a method that simultaneously predicts the secondary structure and transmembrane spans from the protein sequence. This approach not only eliminates the necessity to create a consensus prediction from possibly contradicting outputs of several predictors but bears the potential to predict conformational switches, i.e., sequence regions that have a high probability to change for example from a coil conformation in solution to an α-helical transmembrane state. An artificial neural network was trained on databases of 177 membrane proteins and 6048 soluble proteins. The output is a 3 × 3 dimensional probability matrix for each residue in the sequence that combines three secondary structure types (helix, strand, coil) and three environment types (membrane core, interface, solution). The prediction accuracies are 70.3% for nine possible states, 73.2% for three-state secondary structure prediction, and 94.8% for three-state transmembrane span prediction. These accuracies are comparable to state-of-the-art predictors of secondary structure (e.g., Psipred) or transmembrane placement (e.g., OCTOPUS). The method is available as web server and for download at www.meilerlab.org.

Citing Articles

PtdIns4P is required for the autophagosomal recruitment of STX17 (syntaxin 17) to promote lysosomal fusion.

Laczko-Dobos H, Bhattacharjee A, Maddali A, Kincses A, Abuammar H, Sebok-Nagy K Autophagy. 2024; 20(7):1639-1650.

PMID: 38411137 PMC: 11210929. DOI: 10.1080/15548627.2024.2322493.


Computational modeling and prediction of deletion mutants.

Woods H, Schiano D, Aguirre J, Ledwitch K, McDonald E, Voehler M Structure. 2023; 31(6):713-723.e3.

PMID: 37119820 PMC: 10247520. DOI: 10.1016/j.str.2023.04.005.


Sparse pseudocontact shift NMR data obtained from a non-canonical amino acid-linked lanthanide tag improves integral membrane protein structure prediction.

Ledwitch K, Kunze G, McKinney J, Okwei E, Larochelle K, Pankewitz L J Biomol NMR. 2023; 77(3):69-82.

PMID: 37016190 PMC: 10443207. DOI: 10.1007/s10858-023-00412-9.


State of the art in epitope mapping and opportunities in COVID-19.

Hamed S, Sakr M, El-Housseiny G, Wasfi R, Aboshanab K Future Sci OA. 2023; 16(3-06):FSO832.

PMID: 36897962 PMC: 9987558. DOI: 10.2144/fsoa-2022-0048.


Membrane contact probability: An essential and predictive character for the structural and functional studies of membrane proteins.

Wang L, Zhang J, Wang D, Song C PLoS Comput Biol. 2022; 18(3):e1009972.

PMID: 35353812 PMC: 9000120. DOI: 10.1371/journal.pcbi.1009972.


References
1.
Lin K, Simossis V, Taylor W, Heringa J . A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics. 2004; 21(2):152-9. DOI: 10.1093/bioinformatics/bth487. View

2.
Van Eps N, Preininger A, Alexander N, Kaya A, Meier S, Meiler J . Interaction of a G protein with an activated receptor opens the interdomain interface in the alpha subunit. Proc Natl Acad Sci U S A. 2011; 108(23):9420-4. PMC: 3111277. DOI: 10.1073/pnas.1105810108. View

3.
Hopp T, Woods K . Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A. 1981; 78(6):3824-8. PMC: 319665. DOI: 10.1073/pnas.78.6.3824. View

4.
Tilley S, Orlova E, Gilbert R, Andrew P, Saibil H . Structural basis of pore formation by the bacterial toxin pneumolysin. Cell. 2005; 121(2):247-56. DOI: 10.1016/j.cell.2005.02.033. View

5.
Abel K, Yoder M, Hilgenfeld R, Jurnak F . An alpha to beta conformational switch in EF-Tu. Structure. 1996; 4(10):1153-9. DOI: 10.1016/s0969-2126(96)00123-2. View