Renardy M, Kirschner D, Eisenberg M
J Math Biol. 2022; 84(1-2):9.
PMID: 34982260
PMC: 8724244.
DOI: 10.1007/s00285-021-01711-1.
Stigter J, Joubert D, Molenaar J
Sci Rep. 2017; 7(1):16566.
PMID: 29185491
PMC: 5707395.
DOI: 10.1038/s41598-017-16682-x.
Blanco N, Foxman B, Malani A, Zhang M, Walk S, Rickard A
PLoS One. 2017; 12(8):e0182815.
PMID: 28800598
PMC: 5553947.
DOI: 10.1371/journal.pone.0182815.
Eisenberg M, Jain H
J Theor Biol. 2017; 431:63-78.
PMID: 28733187
PMC: 6007023.
DOI: 10.1016/j.jtbi.2017.07.018.
Olivares-Morales A, Ghosh A, Aarons L, Rostami-Hodjegan A
AAPS J. 2016; 18(6):1532-1549.
PMID: 27631556
DOI: 10.1208/s12248-016-9965-3.
In silico model-based inference: a contemporary approach for hypothesis testing in network biology.
Klinke 2nd D
Biotechnol Prog. 2014; 30(6):1247-61.
PMID: 25139179
PMC: 4261023.
DOI: 10.1002/btpr.1982.
What can we learn from global sensitivity analysis of biochemical systems?.
Kent E, Neumann S, Kummer U, Mendes P
PLoS One. 2013; 8(11):e79244.
PMID: 24244458
PMC: 3828278.
DOI: 10.1371/journal.pone.0079244.
An approach for identifiability of population pharmacokinetic-pharmacodynamic models.
Shivva V, Korell J, Tucker I, Duffull S
CPT Pharmacometrics Syst Pharmacol. 2013; 2:e49.
PMID: 23887745
PMC: 3697038.
DOI: 10.1038/psp.2013.25.
Understanding immunology via engineering design: the role of mathematical prototyping.
Klinke 2nd D, Wang Q
Comput Math Methods Med. 2012; 2012:676015.
PMID: 22973412
PMC: 3438878.
DOI: 10.1155/2012/676015.
A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone.
King J, Unterkofler K, Teschl G, Teschl S, Koc H, Hinterhuber H
J Math Biol. 2011; 63(5):959-99.
PMID: 21234569
DOI: 10.1007/s00285-010-0398-9.
Fractional dynamics pharmacokinetics-pharmacodynamic models.
Verotta D
J Pharmacokinet Pharmacodyn. 2010; 37(3):257-76.
PMID: 20455076
PMC: 2889283.
DOI: 10.1007/s10928-010-9159-z.
Cancer models, genomic instability and somatic cellular Darwinian evolution.
Little M
Biol Direct. 2010; 5:19.
PMID: 20406436
PMC: 2873266.
DOI: 10.1186/1745-6150-5-19.
Signal transduction networks in cancer: quantitative parameters influence network topology.
Klinke 2nd D
Cancer Res. 2010; 70(5):1773-82.
PMID: 20179207
PMC: 2831142.
DOI: 10.1158/0008-5472.CAN-09-3234.
Parameter identifiability and redundancy: theoretical considerations.
Little M, Heidenreich W, Li G
PLoS One. 2010; 5(1):e8915.
PMID: 20111720
PMC: 2811744.
DOI: 10.1371/journal.pone.0008915.
Parameter identifiability and redundancy in a general class of stochastic carcinogenesis models.
Little M, Heidenreich W, Li G
PLoS One. 2010; 4(12):e8520.
PMID: 20046831
PMC: 2797326.
DOI: 10.1371/journal.pone.0008520.
Systematic identifiability testing for unambiguous mechanistic modeling--application to JAK-STAT, MAP kinase, and NF-kappaB signaling pathway models.
Quaiser T, Monnigmann M
BMC Syst Biol. 2009; 3:50.
PMID: 19426527
PMC: 2714303.
DOI: 10.1186/1752-0509-3-50.
Modulating temporal control of NF-kappaB activation: implications for therapeutic and assay selection.
Klinke 2nd D, Ustyugova I, Brundage K, Barnett J
Biophys J. 2008; 94(11):4249-59.
PMID: 18281385
PMC: 2480691.
DOI: 10.1529/biophysj.107.120451.
Iterative approach to model identification of biological networks.
Gadkar K, Gunawan R, Doyle 3rd F
BMC Bioinformatics. 2005; 6:155.
PMID: 15967022
PMC: 1189077.
DOI: 10.1186/1471-2105-6-155.
Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network.
Zak D, Gonye G, Schwaber J, Doyle 3rd F
Genome Res. 2003; 13(11):2396-405.
PMID: 14597654
PMC: 403758.
DOI: 10.1101/gr.1198103.
Kinetic analysis of saturable myocardial uptake of idarubicin in rat heart: effect of doxorubicin and hypothermia.
Kang W, Weiss M
Pharm Res. 2003; 20(1):58-63.
PMID: 12608537
DOI: 10.1023/a:1022246708326.