» Articles » PMID: 23322045

Unprecedented High-temperature CO2 Selectivity in N2-phobic Nanoporous Covalent Organic Polymers

Overview
Journal Nat Commun
Specialty Biology
Date 2013 Jan 17
PMID 23322045
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

Post-combustion CO(2) capture and air separation are integral parts of the energy industry, although the available technologies remain inefficient, resulting in costly energy penalties. Here we report azo-bridged, nitrogen-rich, aromatic, water stable, nanoporous covalent organic polymers, which can be synthesized by catalyst-free direct coupling of aromatic nitro and amine moieties under basic conditions. Unlike other porous materials, azo-covalent organic polymers exhibit an unprecedented increase in CO(2)/N(2) selectivity with increasing temperature, reaching the highest value (288 at 323 K) reported to date. Here we observe that azo groups reject N(2), thus making the framework N(2)-phobic. Monte Carlo simulations suggest that the origin of the N(2) phobicity of the azo-group is the entropic loss of N(2) gas molecules upon binding, although the adsorption is enthalpically favourable. Any gas separations that require the efficient exclusion of N(2) gas would do well to employ azo units in the sorbent chemistry.

Citing Articles

Microwave-assisted reductive homocoupling of aromatic nitro monomers: synthesis of azo-linked porous organic polymers for CO capture.

Car Z, Borovina M, Panic B, Biljan I RSC Adv. 2025; 15(10):7332-7339.

PMID: 40061079 PMC: 11886775. DOI: 10.1039/d5ra00410a.


Nanoscience in Action: Unveiling Emerging Trends in Materials and Applications.

Hughes K, Ganesan M, Tenchov R, Iyer K, Ralhan K, Diaz L ACS Omega. 2025; 10(8):7530-7548.

PMID: 40060806 PMC: 11886759. DOI: 10.1021/acsomega.4c10929.


Synthesis of aromatic polynitroso compounds: Towards functional azodioxy-linked porous polymers.

Cindro N, Car Z, Petrovic Perokovic V, Borovina M, Panic B, Kodrin I Heliyon. 2023; 9(11):e21781.

PMID: 38034606 PMC: 10685250. DOI: 10.1016/j.heliyon.2023.e21781.


Metal cation substitution can tune CO, HO and CH switching pressure in transiently porous coordination networks.

Nikolayenko V, Castell D, Sensharma D, Shivanna M, Loots L, Otake K J Mater Chem A Mater. 2023; 11(30):16019-16026.

PMID: 38013758 PMC: 10394667. DOI: 10.1039/d3ta03300g.


Distribution and Transport of CO in Hyperbranched Poly(ethylenimine)-Loaded MCM-41: A Molecular Dynamics Simulation Approach.

Chen J, Moon H, Kim K, Il Choi J, Narayanan P, Sakwa-Novak M ACS Appl Mater Interfaces. 2023; 15(37):43678-43690.

PMID: 37681296 PMC: 10520917. DOI: 10.1021/acsami.3c07040.


References
1.
Ben T, Ren H, Ma S, Cao D, Lan J, Jing X . Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem Int Ed Engl. 2009; 48(50):9457-60. DOI: 10.1002/anie.200904637. View

2.
McKeown N, Budd P . Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev. 2006; 35(8):675-83. DOI: 10.1039/b600349d. View

3.
Grirrane A, Corma A, Garcia H . Preparation of symmetric and asymmetric aromatic azo compounds from aromatic amines or nitro compounds using supported gold catalysts. Nat Protoc. 2010; 5(3):429-38. DOI: 10.1038/nprot.2009.242. View

4.
Budd P, Ghanem B, Makhseed S, McKeown N, Msayib K, Tattershall C . Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem Commun (Camb). 2004; (2):230-1. DOI: 10.1039/b311764b. View

5.
Ferey G . Hybrid porous solids: past, present, future. Chem Soc Rev. 2008; 37(1):191-214. DOI: 10.1039/b618320b. View