» Articles » PMID: 23319937

Prostaglandins As PPARγ Modulators in Adipogenesis

Overview
Journal PPAR Res
Publisher Wiley
Date 2013 Jan 16
PMID 23319937
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Adipocytes and fat cells play critical roles in the regulation of energy homeostasis. Adipogenesis (adipocyte differentiation) is regulated via a complex process including coordinated changes in hormone sensitivity and gene expression. PPARγ is a ligand-dependent transcription factor and important in adipogenesis, as it enhances the expression of numerous adipogenic and lipogenic genes in adipocytes. Prostaglandins (PGs), which are lipid mediators, are associated with the regulation of PPARγ function in adipocytes. Prostacyclin promotes the differentiation of adipocyte-precursor cells to adipose cells via activation of the expression of C/EBPβ and δ. These proteins are important transcription factors in the activation of the early phase of adipogenesis, and they activate the expression of PPARγ, which event precedes the maturation of adipocytes. PGE(2) and PGF(2α) strongly suppress the early phase of adipocyte differentiation by enhancing their own production via receptor-mediated elevation of the expression of cycloxygenase-2, and they also suppress the function of PPARγ. In contrast, PGD(2) and its non-enzymatic metabolite, Δ(12)-PGJ(2), activate the middle-late phase of adipocyte differentiation through both DP2 receptors and PPARγ. This paper focuses on potential roles of PGs as PPARγ modulators in adipogenesis and regulators of obesity.

Citing Articles

Aspirin Inhibits the In Vitro Adipogenic Differentiation of Human Adipose Tissue-Derived Stem Cells in a Dose-Dependent Manner.

Funke S, Wiggenhauser P, Grundmeier A, Fuchs B, Koban K, Demmer W Int J Mol Sci. 2025; 26(2).

PMID: 39859567 PMC: 11766433. DOI: 10.3390/ijms26020853.


Investigating the crosstalk between and in 3T3-L1 adipocyte differentiation.

Laddha A, Wahane A, Bahal R, Manautou J Front Mol Biosci. 2024; 11:1498946.

PMID: 39717760 PMC: 11663720. DOI: 10.3389/fmolb.2024.1498946.


Uncovering the Role of Selenite and Selenium Nanoparticles (SeNPs) in Adolescent Rat Adipose Tissue beyond Oxidative Balance: Transcriptomic Analysis.

Nogales F, Pajuelo E, Romero-Herrera I, Carreras O, Merchan F, Carrasco Lopez J Antioxidants (Basel). 2024; 13(6).

PMID: 38929188 PMC: 11200624. DOI: 10.3390/antiox13060750.


Prostaglandin F2α Affects the Cycle of Clock Gene Expression and Mouse Behavior.

Tsurudome Y, Yoshida Y, Hamamura K, Ogino T, Yasukochi S, Yasuo S Int J Mol Sci. 2024; 25(3).

PMID: 38339119 PMC: 10855224. DOI: 10.3390/ijms25031841.


Hypoabsorptive surgeries cause limb-dependent changes in the gut endocannabinoidome and microbiome in association with beneficial metabolic effects.

Mukorako P, St-Pierre D, Flamand N, Biertho L, Lebel S, Lemoine N Int J Obes (Lond). 2023; 47(7):630-641.

PMID: 37142736 DOI: 10.1038/s41366-023-01307-3.


References
1.
Penumetcha M, Santanam N . Nutraceuticals as Ligands of PPARγ. PPAR Res. 2012; 2012:858352. PMC: 3388323. DOI: 10.1155/2012/858352. View

2.
Tabe Y, Konopleva M, Andreeff M, Ohsaka A . Effects of PPARγ Ligands on Leukemia. PPAR Res. 2012; 2012:483656. PMC: 3364693. DOI: 10.1155/2012/483656. View

3.
Tanioka T, Nakatani Y, Semmyo N, Murakami M, Kudo I . Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. J Biol Chem. 2000; 275(42):32775-82. DOI: 10.1074/jbc.M003504200. View

4.
Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K . Recent progress in phospholipase A₂ research: from cells to animals to humans. Prog Lipid Res. 2010; 50(2):152-92. DOI: 10.1016/j.plipres.2010.12.001. View

5.
Kanaoka Y, Urade Y . Hematopoietic prostaglandin D synthase. Prostaglandins Leukot Essent Fatty Acids. 2003; 69(2-3):163-7. DOI: 10.1016/s0952-3278(03)00077-2. View