» Articles » PMID: 23318448

Next-generation Sequencing of Endoscopic Biopsies Identifies ARID1A As a Tumor-suppressor Gene in Barrett's Esophagus

Overview
Journal Oncogene
Date 2013 Jan 16
PMID 23318448
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

The incidence of Barrett's esophagus (BE)-associated esophageal adenocarcinoma (EAC) is increasing. Next-generation sequencing (NGS) provides an unprecedented opportunity to uncover genomic alterations during BE pathogenesis and progression to EAC, but treatment-naive surgical specimens are scarce. The objective of this study was to establish the feasibility of using widely available endoscopic mucosal biopsies for successful NGS, using samples obtained from a BE 'progressor'. Paired-end whole-genome NGS was performed on the Illumina platform using libraries generated from mucosal biopsies of normal squamous epithelium (NSE), BE and EAC obtained from a patient who progressed to adenocarcinoma during endoscopic surveillance. Selective validation studies, including Sanger sequencing, immunohistochemistry and functional assays, were performed to confirm the NGS findings. NGS identified somatic nonsense mutations of AT-rich interactive domain 1A (SWI like) (ARID1A) and PPIE and an additional 37 missense mutations in BE and/or EAC, which were confirmed by Sanger sequencing. ARID1A mutations were detected in 15% (3/20) high-grade dysplasia (HGD)/EAC patients. Immunohistochemistry performed on an independent archival cohort demonstrated ARID1A protein loss in 0% (0/76), 4.9% (2/40), 14.3% (4/28), 16.0% (8/50) and 12.2% (12/98) of NSE, BE, low-grade dysplasia, HGD and EAC tissues, respectively, and was inversely associated with nuclear p53 accumulation (P=0.028). Enhanced cell growth, proliferation and invasion were observed on ARID1A knockdown in EAC cells. In addition, genes downstream of ARID1A that potentially contribute to the ARID1A knockdown phenotype were identified. Our studies establish the feasibility of using mucosal biopsies for NGS, which should enable the comparative analysis of larger 'progressor' versus 'non-progressor' cohorts. Further, we identify ARID1A as a novel tumor-suppressor gene in BE pathogenesis, reiterating the importance of aberrant chromatin in the metaplasia-dysplasia sequence.

Citing Articles

overexpression inhibits colorectal cancer cell migration through the regulation of epithelial‑mesenchymal transition.

Wanna-Udom S, Aluksanasuwan S, Somsuan K, Mongkolwat W, Sakulsak N Mol Med Rep. 2024; 30(5).

PMID: 39301629 PMC: 11406482. DOI: 10.3892/mmr.2024.13325.


ISG15/GRAIL1/CD3 axis influences survival of patients with esophageal adenocarcinoma.

McEwen D, Ray P, Nancarrow D, Wang Z, Kasturirangan S, Abdullah S JCI Insight. 2024; 9(13).

PMID: 38781019 PMC: 11383178. DOI: 10.1172/jci.insight.179315.


Latest advances in the study of non-coding RNA-mediated circadian rhythm disorders causing endometrial cancer.

Zheng L, Chen S, Zhou L, Huang Q, Chen J, Chen W Front Oncol. 2023; 13:1277543.

PMID: 38074657 PMC: 10703048. DOI: 10.3389/fonc.2023.1277543.


ARID1A Deficiency Regulates Anti-Tumor Immune Response in Esophageal Adenocarcinoma.

Zhang L, Zheng Y, Chien W, Ziman B, Billet S, Koeffler H Cancers (Basel). 2023; 15(22).

PMID: 38001638 PMC: 10670331. DOI: 10.3390/cancers15225377.


Epigenetics as a mediator of plasticity in cancer.

Feinberg A, Levchenko A Science. 2023; 379(6632):eaaw3835.

PMID: 36758093 PMC: 10249049. DOI: 10.1126/science.aaw3835.


References
1.
Goh X, Rees J, Paterson A, Chin S, Marioni J, Save V . Integrative analysis of array-comparative genomic hybridisation and matched gene expression profiling data reveals novel genes with prognostic significance in oesophageal adenocarcinoma. Gut. 2011; 60(10):1317-26. DOI: 10.1136/gut.2010.234179. View

2.
Hanahan D, Weinberg R . Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646-74. DOI: 10.1016/j.cell.2011.02.013. View

3.
Gupta S, Pramanik D, Mukherjee R, Campbell N, Elumalai S, de Wilde R . Molecular determinants of retinoic acid sensitivity in pancreatic cancer. Clin Cancer Res. 2011; 18(1):280-9. PMC: 3251696. DOI: 10.1158/1078-0432.CCR-11-2165. View

4.
Li X, Galipeau P, Sanchez C, Blount P, Maley C, Arnaudo J . Single nucleotide polymorphism-based genome-wide chromosome copy change, loss of heterozygosity, and aneuploidy in Barrett's esophagus neoplastic progression. Cancer Prev Res (Phila). 2009; 1(6):413-23. PMC: 2882787. DOI: 10.1158/1940-6207.CAPR-08-0121. View

5.
Agrawal N, Jiao Y, Bettegowda C, Hutfless S, Wang Y, David S . Comparative genomic analysis of esophageal adenocarcinoma and squamous cell carcinoma. Cancer Discov. 2012; 2(10):899-905. PMC: 3473124. DOI: 10.1158/2159-8290.CD-12-0189. View