» Articles » PMID: 23316047

Dominant Negative LptE Mutation That Supports a Role for LptE As a Plug in the LptD Barrel

Overview
Journal J Bacteriol
Specialty Microbiology
Date 2013 Jan 15
PMID 23316047
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

Lipopolysaccharide (LPS) is the major outer leaflet constituent of the Gram-negative outer membrane (OM) bilayer. A bipartite protein complex of LptD and LptE assembles LPS into the OM. It has been established that LptE assists folding and assembly of its β-barrel partner LptD, yet reported biochemical evidence suggested additional LptE functions. Here, we isolated dominant negative lptE mutations, seeking to inform these functions. The lptE14 mutation increased OM permeability to erythromycin, even when the wild-type lptE gene was present. We show that the lptE14 mutation does not cause a defect in either LptD assembly or LPS export. A spontaneous IS1 insertion in secA suppressed lptE14 erythromycin sensitivity by removing the C-terminal SecB-binding domain of SecA. While this suppressor mutation broadly impeded SecB-dependent secretion of preproteins, we show that suppression was a direct and specific consequence of reduced LptD levels in the OM. We suggest that lptE14 causes poor plugging of the LptD β barrel and that a reduction of ineffectively plugged LptD-LptE14 complexes in the OM decreases permeability to erythromycin. Hence, lptE14 supports a proposed plug-and-barrel LptE-LptD arrangement.

Citing Articles

Exploring the principles behind antibiotics with limited resistance.

Maharramov E, Czikkely M, Szili P, Farkas Z, Grezal G, Daruka L Nat Commun. 2025; 16(1):1842.

PMID: 39984459 PMC: 11845477. DOI: 10.1038/s41467-025-56934-3.


Structural Insights into the Lipopolysaccharide Transport (Lpt) System as a Novel Antibiotic Target.

Yoon Y, Song S J Microbiol. 2024; 62(4):261-275.

PMID: 38816673 DOI: 10.1007/s12275-024-00137-w.


Identification of a novel transport system in Borrelia burgdorferi that links the inner and outer membranes.

Bowen H, Kenedy M, Johnson D, MacKerell A, Akins D Pathog Dis. 2023; 81.

PMID: 37385817 PMC: 10353723. DOI: 10.1093/femspd/ftad014.


Molecular events confirming antimutagenicity to abscisic acid derived from a floral honey establishing its functional relevance.

Saxena S, Gautam S Heliyon. 2022; 8(7):e09945.

PMID: 35874072 PMC: 9305366. DOI: 10.1016/j.heliyon.2022.e09945.


The Structure of SecA2 ATPase Exposes Regions Responsible for Differential Target Recognition of the SecA1 and SecA2-Dependent Systems.

Lindic N, Loboda J, Usenik A, Vidmar R, Turk D Int J Mol Sci. 2020; 21(17).

PMID: 32858965 PMC: 7503281. DOI: 10.3390/ijms21176153.


References
1.
Bowyer A, Baardsnes J, Ajamian E, Zhang L, Cygler M . Characterization of interactions between LPS transport proteins of the Lpt system. Biochem Biophys Res Commun. 2011; 404(4):1093-8. DOI: 10.1016/j.bbrc.2010.12.121. View

2.
Ruiz N, Gronenberg L, Kahne D, Silhavy T . Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of Escherichia coli. Proc Natl Acad Sci U S A. 2008; 105(14):5537-42. PMC: 2291135. DOI: 10.1073/pnas.0801196105. View

3.
Freinkman E, Chng S, Kahne D . The complex that inserts lipopolysaccharide into the bacterial outer membrane forms a two-protein plug-and-barrel. Proc Natl Acad Sci U S A. 2011; 108(6):2486-91. PMC: 3038725. DOI: 10.1073/pnas.1015617108. View

4.
Sperandeo P, Cescutti R, Villa R, di Benedetto C, Candia D, Deho G . Characterization of lptA and lptB, two essential genes implicated in lipopolysaccharide transport to the outer membrane of Escherichia coli. J Bacteriol. 2006; 189(1):244-53. PMC: 1797204. DOI: 10.1128/JB.01126-06. View

5.
Sperandeo P, Pozzi C, Deho G, Polissi A . Non-essential KDO biosynthesis and new essential cell envelope biogenesis genes in the Escherichia coli yrbG-yhbG locus. Res Microbiol. 2006; 157(6):547-58. DOI: 10.1016/j.resmic.2005.11.014. View