» Articles » PMID: 23304643

Accelerated Image Reconstruction in Fluorescence Molecular Tomography Using Dimension Reduction

Overview
Specialty Radiology
Date 2013 Jan 11
PMID 23304643
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

With the development of charge-coupled device (CCD) camera based non-contact fluorescence molecular tomography (FMT) imaging systems, multi projections and densely sampled fluorescent measurements used in subsequent image reconstruction can be easily obtained. However, challenges still remain in fast image reconstruction because of the large computational burden and memory requirement in the inverse problem. In this work, an accelerated image reconstruction method in FMT using principal components analysis (PCA) is presented to reduce the dimension of the inverse problem. Phantom experiments are performed to verify the feasibility of the proposed method. The results demonstrate that the proposed method can accelerate image reconstruction in FMT almost without quality degradation.

Citing Articles

Improved Deep Learning Based Method for Molecular Similarity Searching Using Stack of Deep Belief Networks.

Nasser M, Salim N, Hamza H, Saeed F, Rabiu I Molecules. 2021; 26(1).

PMID: 33383976 PMC: 7795308. DOI: 10.3390/molecules26010128.


Improving mesoscopic fluorescence molecular tomography through data reduction.

Yang F, Ozturk M, Yao R, Intes X Biomed Opt Express. 2017; 8(8):3868-3881.

PMID: 28856056 PMC: 5560847. DOI: 10.1364/BOE.8.003868.


A reconstruction approach in wavelet domain for fluorescent molecular tomography via rotated sources illumination.

Zou W, Wang J, Hu D, Wang W Biomed Eng Online. 2015; 14:86.

PMID: 26419738 PMC: 4589093. DOI: 10.1186/s12938-015-0080-y.


Acceleration of dynamic fluorescence molecular tomography with principal component analysis.

Zhang G, He W, Pu H, Liu F, Chen M, Bai J Biomed Opt Express. 2015; 6(6):2036-55.

PMID: 26114027 PMC: 4473742. DOI: 10.1364/BOE.6.002036.

References
1.
Massoud T, Gambhir S . Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003; 17(5):545-80. DOI: 10.1101/gad.1047403. View

2.
Ripoll J, Nieto-Vesperinas M, Weissleder R, Ntziachristos V . Fast analytical approximation for arbitrary geometries in diffuse optical tomography. Opt Lett. 2007; 27(7):527-9. DOI: 10.1364/ol.27.000527. View

3.
Deliolanis N, Lasser T, Hyde D, Soubret A, Ripoll J, Ntziachristos V . Free-space fluorescence molecular tomography utilizing 360 degrees geometry projections. Opt Lett. 2007; 32(4):382-4. DOI: 10.1364/ol.32.000382. View

4.
Ntziachristos V, Ripoll J, Wang L, Weissleder R . Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol. 2005; 23(3):313-20. DOI: 10.1038/nbt1074. View

5.
Ducros N, Bassi A, Valentini G, Schweiger M, Arridge S, DAndrea C . Multiple-view fluorescence optical tomography reconstruction using compression of experimental data. Opt Lett. 2011; 36(8):1377-9. DOI: 10.1364/OL.36.001377. View