Hang L, Haibier A, Kayierhan A, Abudurexiti T
BMC Surg. 2024; 24(1):256.
PMID: 39261801
PMC: 11389418.
DOI: 10.1186/s12893-024-02561-6.
Wang R, Tang L, Hu Y
Exp Hematol Oncol. 2024; 13(1):89.
PMID: 39192370
PMC: 11348605.
DOI: 10.1186/s40164-024-00555-x.
Harmantepe A, Dulger U, Gonullu E, Dikicier E, Senturk A, Eroz E
Ulus Travma Acil Cerrahi Derg. 2024; 30(7):487-492.
PMID: 38967529
PMC: 11331353.
DOI: 10.14744/tjtes.2024.48074.
Huang Y, Li J, Li M, Aparasu R
BMC Med Res Methodol. 2023; 23(1):268.
PMID: 37957593
PMC: 10641971.
DOI: 10.1186/s12874-023-02078-1.
Zapata R, Huang S, Morris E, Wang C, Harle C, Magoc T
PLoS One. 2023; 18(10):e0292888.
PMID: 37862334
PMC: 10588875.
DOI: 10.1371/journal.pone.0292888.
Validated risk prediction models for outcomes of acute kidney injury: a systematic review.
Haredasht F, Vanhoutte L, Vens C, Pottel H, Viaene L, De Corte W
BMC Nephrol. 2023; 24(1):133.
PMID: 37161365
PMC: 10170731.
DOI: 10.1186/s12882-023-03150-0.
Artificial Intelligence-Based Prediction of Lower Extremity Deep Vein Thrombosis Risk After Knee/Hip Arthroplasty.
Wang X, Xi H, Geng X, Li Y, Zhao M, Li F
Clin Appl Thromb Hemost. 2023; 29:10760296221139263.
PMID: 36596268
PMC: 9830569.
DOI: 10.1177/10760296221139263.
Development and Validation of a Risk Prediction Model for Venous Thromboembolism in Lung Cancer Patients Using Machine Learning.
Lei H, Zhang M, Wu Z, Liu C, Li X, Zhou W
Front Cardiovasc Med. 2022; 9:845210.
PMID: 35321110
PMC: 8934875.
DOI: 10.3389/fcvm.2022.845210.
Artificial intelligence, machine learning, and deep learning for clinical outcome prediction.
Pettit R, Fullem R, Cheng C, Amos C
Emerg Top Life Sci. 2021; .
PMID: 34927670
PMC: 8786279.
DOI: 10.1042/ETLS20210246.
Construction of a Risk Prediction Model for Hospital-Acquired Pulmonary Embolism in Hospitalized Patients.
Hou L, Hu L, Gao W, Sheng W, Hao Z, Chen Y
Clin Appl Thromb Hemost. 2021; 27:10760296211040868.
PMID: 34558325
PMC: 8495515.
DOI: 10.1177/10760296211040868.
Evaluation of the impact of body mass index on venous thromboembolism risk factors.
Tajik F, Wang M, Zhang X, Han J
PLoS One. 2020; 15(7):e0235007.
PMID: 32645000
PMC: 7347165.
DOI: 10.1371/journal.pone.0235007.
Identifying patterns and predictors of lifestyle modification in electronic health record documentation using statistical and machine learning methods.
Shoenbill K, Song Y, Craven M, Johnson H, Smith M, Mendonca E
Prev Med. 2020; 136:106061.
PMID: 32179026
PMC: 7314106.
DOI: 10.1016/j.ypmed.2020.106061.
Cost-sensitive Active Learning for Phenotyping of Electronic Health Records.
Ji Z, Wei Q, Franklin A, Cohen T, Xu H
AMIA Jt Summits Transl Sci Proc. 2019; 2019:829-838.
PMID: 31259040
PMC: 6568101.
Hybrid bag of approaches to characterize selection criteria for cohort identification.
Vydiswaran V, Strayhorn A, Zhao X, Robinson P, Agarwal M, Bagazinski E
J Am Med Inform Assoc. 2019; 26(11):1172-1180.
PMID: 31197354
PMC: 7647216.
DOI: 10.1093/jamia/ocz079.
IRB Process Improvements: A Machine Learning Analysis.
Shoenbill K, Song Y, Cobb N, Drezner M, Mendonca E
J Clin Transl Sci. 2017; 1(3):176-183.
PMID: 29082031
PMC: 5647673.
DOI: 10.1017/cts.2016.25.
Text Mining of the Electronic Health Record: An Information Extraction Approach for Automated Identification and Subphenotyping of HFpEF Patients for Clinical Trials.
Jonnalagadda S, Adupa A, Garg R, Corona-Cox J, Shah S
J Cardiovasc Transl Res. 2017; 10(3):313-321.
PMID: 28585184
DOI: 10.1007/s12265-017-9752-2.
An Empirical Study for Impacts of Measurement Errors on EHR based Association Studies.
Duan R, Cao M, Wu Y, Huang J, Denny J, Xu H
AMIA Annu Symp Proc. 2017; 2016:1764-1773.
PMID: 28269935
PMC: 5333313.
Improving diagnostic recognition of primary hyperparathyroidism with machine learning.
Somnay Y, Craven M, McCoy K, Carty S, Wang T, Greenberg C
Surgery. 2016; 161(4):1113-1121.
PMID: 27989606
PMC: 5367958.
DOI: 10.1016/j.surg.2016.09.044.
Development of Type 2 Diabetes Mellitus Phenotyping Framework Using Expert Knowledge and Machine Learning Approach.
Kagawa R, Kawazoe Y, Ida Y, Shinohara E, Tanaka K, Imai T
J Diabetes Sci Technol. 2016; 11(4):791-799.
PMID: 27932531
PMC: 5588819.
DOI: 10.1177/1932296816681584.
Text Mining for Precision Medicine: Bringing Structure to EHRs and Biomedical Literature to Understand Genes and Health.
Simmons M, Singhal A, Lu Z
Adv Exp Med Biol. 2016; 939:139-166.
PMID: 27807747
PMC: 5931382.
DOI: 10.1007/978-981-10-1503-8_7.