» Articles » PMID: 23303210

Asymmetry of the Rhodopsin Dimer in Complex with Transducin

Overview
Journal FASEB J
Specialties Biology
Physiology
Date 2013 Jan 11
PMID 23303210
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

A large body of evidence for G-protein-coupled receptor (GPCR) oligomerization has accumulated over the past 2 decades. The smallest of these oligomers in vivo most likely is a dimer that buries 1000-Å(2) intramolecular surfaces and on stimulation forms a complex with heterotrimeric G protein in 2:1 stoichiometry. However, it is unclear whether each of the monomers adopts the same or a different conformation and function after activation of this dimer. With bovine rhodopsin (Rho) and its cognate bovine G-protein transducin (Gt) as a model system, we used the retinoid chromophores 11-cis-retinal and 9-cis-retinal to monitor each monomer of the dimeric GPCR within a stable complex with nucleotide-free Gt. We found that only 50% of Rho* in the Rho*-Gt complex is trapped in a Meta II conformation, while 50% evolves toward an opsin conformation and can be regenerated with 9-cis-retinal. We also found that all-trans-retinal can regenerate chromophore-depleted Rho*e complexed with Gt and FAK*TSA peptide containing Lys(296) with the attached all-trans retinoid (m/z of 934.5[MH](+)) was identified by mass spectrometry. Thus, our study shows that each of the monomers contributes unequally to the pentameric (2:1:1:1) complex of Rho dimer and Gt heterotrimer, validating the oligomeric structure of the complex and the asymmetry of the GPCR dimer, and revealing its structural/functional signature. This study provides a clear functional distinction between monomers of family A GPCRs in their oligomeric form.

Citing Articles

In vivo photoreceptor base editing ameliorates rhodopsin-E150K autosomal-recessive retinitis pigmentosa in mice.

Du S, Newby G, Salom D, Gao F, Menezes C, Suh S Proc Natl Acad Sci U S A. 2024; 121(48):e2416827121.

PMID: 39556729 PMC: 11621631. DOI: 10.1073/pnas.2416827121.


A rapid, tag-free way to purify functional GPCRs.

Shumate A, Farrens D J Biol Chem. 2023; 300(1):105558.

PMID: 38097184 PMC: 10820827. DOI: 10.1016/j.jbc.2023.105558.


Rhodopsin as a Molecular Target to Mitigate Retinitis Pigmentosa.

Ortega J, Jastrzebska B Adv Exp Med Biol. 2021; 1371:61-77.

PMID: 34962636 DOI: 10.1007/5584_2021_682.


Supramolecular organization of rhodopsin in rod photoreceptor cell membranes.

Park P Pflugers Arch. 2021; 473(9):1361-1376.

PMID: 33591421 PMC: 8364927. DOI: 10.1007/s00424-021-02522-5.


Novel fluorescent GPCR biosensor detects retinal equilibrium binding to opsin and active G protein and arrestin signaling conformations.

Schafer C, Shumate A, Farrens D J Biol Chem. 2021; 295(51):17486-17496.

PMID: 33453993 PMC: 7762930. DOI: 10.1074/jbc.RA120.014631.


References
1.
Singh P, Wang B, Maeda T, Palczewski K, Tesmer J . Structures of rhodopsin kinase in different ligand states reveal key elements involved in G protein-coupled receptor kinase activation. J Biol Chem. 2008; 283(20):14053-62. PMC: 2376226. DOI: 10.1074/jbc.M708974200. View

2.
WALD G, Hubbard R . Visual pigment of a decapod crustacean: the lobster. Nature. 1957; 180(4580):278-80. DOI: 10.1038/180278a0. View

3.
Choe H, Kim Y, Park J, Morizumi T, Pai E, Krauss N . Crystal structure of metarhodopsin II. Nature. 2011; 471(7340):651-5. DOI: 10.1038/nature09789. View

4.
Fanelli F, DellOrco D . Dark and photoactivated rhodopsin share common binding modes to transducin. FEBS Lett. 2008; 582(6):991-6. DOI: 10.1016/j.febslet.2008.02.041. View

5.
Rivero-Muller A, Chou Y, Ji I, Lajic S, Hanyaloglu A, Jonas K . Rescue of defective G protein-coupled receptor function in vivo by intermolecular cooperation. Proc Natl Acad Sci U S A. 2010; 107(5):2319-24. PMC: 2836644. DOI: 10.1073/pnas.0906695106. View