» Articles » PMID: 23298236

Novel P2 Tris-tetrahydrofuran Group in Antiviral Compound 1 (GRL-0519) Fills the S2 Binding Pocket of Selected Mutants of HIV-1 Protease

Overview
Journal J Med Chem
Specialty Chemistry
Date 2013 Jan 10
PMID 23298236
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

GRL-0519 (1) is a potent antiviral inhibitor of HIV-1 protease (PR) possessing tris-tetrahydrofuran (tris-THF) at P2. The high resolution X-ray crystal structures of inhibitor 1 in complexes with single substitution mutants PR(R8Q), PR(D30N), PR(I50V), PR(I54M), and PR(V82A) were analyzed in relation to kinetic data. The smaller valine side chain in PR(I50V) eliminated hydrophobic interactions with inhibitor and the other subunit consistent with 60-fold worse inhibition. Asn30 in PR(D30N) showed altered interactions with neighboring residues and 18-fold worse inhibition. Mutations V82A and I54M showed compensating structural changes consistent with 6-7-fold lower inhibition. Gln8 in PR(R8Q) replaced the ionic interactions of wild type Arg8 with hydrogen bond interactions without changing the inhibition significantly. The carbonyl oxygen of Gly48 showed two alternative conformations in all structures likely due to the snug fit of the large tris-THF group in the S2 subsite in agreement with high antiviral efficacy of 1 on resistant virus.

Citing Articles

Exploring the potential of some natural indoles as antiviral agents: quantum chemical analysis, inverse molecular docking, and affinity calculations.

Belal A, Abdou A, Miski S, Ali M, Ghamry H, Obaidullah A Front Chem. 2025; 12:1521298.

PMID: 39886558 PMC: 11779707. DOI: 10.3389/fchem.2024.1521298.


HIV-1 protease with 10 lopinavir and darunavir resistance mutations exhibits altered inhibition, structural rearrangements and extreme dynamics.

Wong-Sam A, Wang Y, Kneller D, Kovalevsky A, Ghosh A, Harrison R J Mol Graph Model. 2022; 117:108315.

PMID: 36108568 PMC: 10091457. DOI: 10.1016/j.jmgm.2022.108315.


Phosphine-catalyzed divergent domino processes between γ-substituted allenoates and carbonyl-activated alkenes.

Wu M, Han Z, Ni H, Wang N, Ding K, Lu Y Chem Sci. 2022; 13(11):3161-3168.

PMID: 35414887 PMC: 8926293. DOI: 10.1039/d1sc06364b.


The Pseudo-Symmetric -benzyl Hydroxyethylamine Core in a New Series of Heteroarylcarboxyamide HIV-1 Pr Inhibitors: Synthesis, Molecular Modeling and Biological Evaluation.

DOrsi R, Funicello M, Laurita T, Lupattelli P, Berti F, Chiummiento L Biomolecules. 2021; 11(11).

PMID: 34827582 PMC: 8615997. DOI: 10.3390/biom11111584.


Structural Impacts of Drug-Resistance Mutations Appearing in HIV-2 Protease.

Laville P, Petitjean M, Regad L Molecules. 2021; 26(3).

PMID: 33503916 PMC: 7865771. DOI: 10.3390/molecules26030611.


References
1.
Darke P, NUTT R, Brady S, Garsky V, Ciccarone T, Leu C . HIV-1 protease specificity of peptide cleavage is sufficient for processing of gag and pol polyproteins. Biochem Biophys Res Commun. 1988; 156(1):297-303. DOI: 10.1016/s0006-291x(88)80839-8. View

2.
Kovalevsky A, Liu F, Leshchenko S, Ghosh A, Louis J, Harrison R . Ultra-high resolution crystal structure of HIV-1 protease mutant reveals two binding sites for clinical inhibitor TMC114. J Mol Biol. 2006; 363(1):161-73. PMC: 1781337. DOI: 10.1016/j.jmb.2006.08.007. View

3.
Girard M, Bansal G . HIV/AIDS vaccines: a need for new concepts?. Int Rev Immunol. 2008; 27(6):447-71. DOI: 10.1080/08830180802432160. View

4.
Pazhanisamy S, Stuver C, Cullinan A, Margolin N, Rao B, Livingston D . Kinetic characterization of human immunodeficiency virus type-1 protease-resistant variants. J Biol Chem. 1996; 271(30):17979-85. DOI: 10.1074/jbc.271.30.17979. View

5.
Ho D, Toyoshima T, Mo H, Kempf D, Norbeck D, Chen C . Characterization of human immunodeficiency virus type 1 variants with increased resistance to a C2-symmetric protease inhibitor. J Virol. 1994; 68(3):2016-20. PMC: 236669. DOI: 10.1128/JVI.68.3.2016-2020.1994. View