» Articles » PMID: 23285602

Automatic Detection and Classification of Teeth in CT Data

Overview
Publisher Springer
Date 2013 Jan 5
PMID 23285602
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

We propose a fully automatic method for tooth detection and classification in CT or cone-beam CT image data. First we compute an accurate segmentation of the maxilla bone. Based on this segmentation, our method computes a complete and optimal separation of the row of teeth into 16 subregions and classifies the resulting regions as existing or missing teeth. This serves as a prerequisite for further individual tooth segmentation. We show the robustness of our approach by providing extensive validation on 43 clinical head CT scans.

Citing Articles

Fully automatic AI segmentation of oral surgery-related tissues based on cone beam computed tomography images.

Liu Y, Xie R, Wang L, Liu H, Liu C, Zhao Y Int J Oral Sci. 2024; 16(1):34.

PMID: 38719817 PMC: 11079075. DOI: 10.1038/s41368-024-00294-z.


Deep learning for tooth identification and numbering on dental radiography: a systematic review and meta-analysis.

Sadr S, Rokhshad R, Daghighi Y, Golkar M, Tolooie Kheybari F, Gorjinejad F Dentomaxillofac Radiol. 2024; 53(1):5-21.

PMID: 38183164 PMC: 11003608. DOI: 10.1093/dmfr/twad001.


Detecting missing teeth on PMCT using statistical shape modeling.

Rahbani D, Fliss B, Ebert L, Bjelopavlovic M Forensic Sci Med Pathol. 2023; 20(1):23-31.

PMID: 36892806 PMC: 10944413. DOI: 10.1007/s12024-023-00590-w.


Assessment of automatic segmentation of teeth using a watershed-based method.

Galibourg A, Dumoncel J, Telmon N, Calvet A, Michetti J, Maret D Dentomaxillofac Radiol. 2017; 47(1):20170220.

PMID: 28937285 PMC: 5965733. DOI: 10.1259/dmfr.20170220.


Metal Artifact Reduction and Segmentation of Dental Computerized Tomography Images Using Least Square Support Vector Machine and Mean Shift Algorithm.

Mortaheb P, Rezaeian M J Med Signals Sens. 2016; 6(1):1-11.

PMID: 27014607 PMC: 4786958.