Automatic Detection and Classification of Teeth in CT Data
Overview
Affiliations
We propose a fully automatic method for tooth detection and classification in CT or cone-beam CT image data. First we compute an accurate segmentation of the maxilla bone. Based on this segmentation, our method computes a complete and optimal separation of the row of teeth into 16 subregions and classifies the resulting regions as existing or missing teeth. This serves as a prerequisite for further individual tooth segmentation. We show the robustness of our approach by providing extensive validation on 43 clinical head CT scans.
Liu Y, Xie R, Wang L, Liu H, Liu C, Zhao Y Int J Oral Sci. 2024; 16(1):34.
PMID: 38719817 PMC: 11079075. DOI: 10.1038/s41368-024-00294-z.
Sadr S, Rokhshad R, Daghighi Y, Golkar M, Tolooie Kheybari F, Gorjinejad F Dentomaxillofac Radiol. 2024; 53(1):5-21.
PMID: 38183164 PMC: 11003608. DOI: 10.1093/dmfr/twad001.
Detecting missing teeth on PMCT using statistical shape modeling.
Rahbani D, Fliss B, Ebert L, Bjelopavlovic M Forensic Sci Med Pathol. 2023; 20(1):23-31.
PMID: 36892806 PMC: 10944413. DOI: 10.1007/s12024-023-00590-w.
Assessment of automatic segmentation of teeth using a watershed-based method.
Galibourg A, Dumoncel J, Telmon N, Calvet A, Michetti J, Maret D Dentomaxillofac Radiol. 2017; 47(1):20170220.
PMID: 28937285 PMC: 5965733. DOI: 10.1259/dmfr.20170220.
Mortaheb P, Rezaeian M J Med Signals Sens. 2016; 6(1):1-11.
PMID: 27014607 PMC: 4786958.