Using the Fast Fourier Transform to Accelerate the Computational Search for RNA Conformational Switches
Overview
Affiliations
Using complex roots of unity and the Fast Fourier Transform, we design a new thermodynamics-based algorithm, FFTbor, that computes the Boltzmann probability that secondary structures differ by [Formula: see text] base pairs from an arbitrary initial structure of a given RNA sequence. The algorithm, which runs in quartic time O(n(4)) and quadratic space O(n(2)), is used to determine the correlation between kinetic folding speed and the ruggedness of the energy landscape, and to predict the location of riboswitch expression platform candidates. A web server is available at http://bioinformatics.bc.edu/clotelab/FFTbor/.
Takizawa H, Iwakiri J, Asai K BMC Bioinformatics. 2020; 21(1):210.
PMID: 32448174 PMC: 7245837. DOI: 10.1186/s12859-020-3535-5.
PATTERNA: transcriptome-wide search for functional RNA elements via structural data signatures.
Ledda M, Aviran S Genome Biol. 2018; 19(1):28.
PMID: 29495968 PMC: 5833111. DOI: 10.1186/s13059-018-1399-z.
RNA folding kinetics using Monte Carlo and Gillespie algorithms.
Clote P, Bayegan A J Math Biol. 2017; 76(5):1195-1227.
PMID: 28780735 DOI: 10.1007/s00285-017-1169-7.
Changes in the Plasticity of HIV-1 Nef RNA during the Evolution of the North American Epidemic.
Manzourolajdad A, Gonzalez M, Spouge J PLoS One. 2016; 11(9):e0163688.
PMID: 27685447 PMC: 5042412. DOI: 10.1371/journal.pone.0163688.
Secondary structural entropy in RNA switch (Riboswitch) identification.
Manzourolajdad A, Arnold J BMC Bioinformatics. 2015; 16:133.
PMID: 25928324 PMC: 4448311. DOI: 10.1186/s12859-015-0523-2.