» Articles » PMID: 23283522

Multifunctional Enzymes in Archaea: Promiscuity and Moonlight

Overview
Journal Extremophiles
Publisher Springer
Date 2013 Jan 4
PMID 23283522
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Enzymes from many archaea colonizing extreme environments are of great interest because of their potential for various biotechnological processes and scientific value of evolution. Many enzymes from archaea have been reported to catalyze promiscuous reactions or moonlight in different functions. Here, we summarize known archaeal enzymes of both groups that include different kinds of proteins. Knowledge of their biochemical properties and three-dimensional structures has proved invaluable in understanding mechanism, application, and evolutionary implications of this manifestation. In addition, the review also summarizes the methods to unravel the extra function which almost was discovered serendipitously. The study of these amazing enzymes will provide clues to optimize protein engineering applications and how enzymes might have evolved on Earth.

Citing Articles

Molecular Identification and Bioinformatics Analysis of Moonlighting Proteins as Possible Antigenic Targets.

Quiroz-Castaneda R, Aguilar-Diaz H, Coronado-Villanueva E, Catalan-Ochoa D, Amaro-Estrada I Pathogens. 2024; 13(10).

PMID: 39452716 PMC: 11510912. DOI: 10.3390/pathogens13100845.


Moonlight functions of glycolytic enzymes in cancer.

Shegay P, Shatova O, Zabolotneva A, Shestopalov A, Kaprin A Front Mol Biosci. 2023; 10:1076138.

PMID: 37449059 PMC: 10337784. DOI: 10.3389/fmolb.2023.1076138.


Moonlighting enzymes: when cellular context defines specificity.

Gupta M, Uversky V Cell Mol Life Sci. 2023; 80(5):130.

PMID: 37093283 PMC: 11073002. DOI: 10.1007/s00018-023-04781-0.


Medical implications of protein moonlighting.

Gupta M, Pandey S, Ehtesham N, Hasnain S Indian J Med Res. 2019; 149(3):322-325.

PMID: 31249195 PMC: 6607823. DOI: 10.4103/ijmr.IJMR_2192_18.


A High-Throughput Mass-Spectrometry-Based Assay for Identifying the Biochemical Functions of Putative Glycosidases.

Peng T, Nagy G, Trinidad J, Jackson J, Pohl N Chembiochem. 2017; 18(23):2306-2311.

PMID: 28960712 PMC: 5716848. DOI: 10.1002/cbic.201700292.


References
1.
Jia B, Park S, Lee S, Pham B, Yu R, Le T . Hexameric ring structure of a thermophilic archaeon NADH oxidase that produces predominantly H2O. FEBS J. 2008; 275(21):5355-66. DOI: 10.1111/j.1742-4658.2008.06665.x. View

2.
Swan M, Hansen T, Schonheit P, Davies C . Structural basis for phosphomannose isomerase activity in phosphoglucose isomerase from Pyrobaculum aerophilum: a subtle difference between distantly related enzymes. Biochemistry. 2004; 43(44):14088-95. DOI: 10.1021/bi048608y. View

3.
Brown J . Ancient horizontal gene transfer. Nat Rev Genet. 2003; 4(2):121-32. DOI: 10.1038/nrg1000. View

4.
Angelov A, Futterer O, Valerius O, Braus G, Liebl W . Properties of the recombinant glucose/galactose dehydrogenase from the extreme thermoacidophile, Picrophilus torridus. FEBS J. 2005; 272(4):1054-62. DOI: 10.1111/j.1742-4658.2004.04539.x. View

5.
Atomi H, Sato T, Kanai T . Application of hyperthermophiles and their enzymes. Curr Opin Biotechnol. 2011; 22(5):618-26. DOI: 10.1016/j.copbio.2011.06.010. View