» Articles » PMID: 23228329

Characterization of the Ribosome Biogenesis Landscape in E. Coli Using Quantitative Mass Spectrometry

Overview
Journal J Mol Biol
Publisher Elsevier
Date 2012 Dec 12
PMID 23228329
Citations 79
Authors
Affiliations
Soon will be listed here.
Abstract

The ribosome is an essential and highly complex biological system in all living cells. A large body of literature on the assembly of the ribosome in vitro is available, but a clear picture of this process inside the cell has yet to emerge. Here, we directly characterized in vivo ribosome assembly intermediates and associated assembly factors from wild-type Escherichia coli cells using a general quantitative mass spectrometry (qMS) approach. The presence of distinct populations of ribosome assembly intermediates was verified using an in vivo stable isotope pulse-labeling approach, and their exact ribosomal protein contents were characterized against an isotopically labeled standard. The model-free clustering analysis of the resultant protein levels for the different ribosomal particles produced four 30S assembly groups that correlate very well with previous in vitro assembly studies of the small ribosomal subunit and six 50S assembly groups that clearly define an in vivo assembly landscape for the larger ribosomal subunit. In addition, de novo proteomics identified a total of 21 known and potentially new ribosome assembly factors co-localized with various ribosomal particles. These results represent new in vivo assembly maps of the E. coli 30S and 50S subunits, and the general qMS approach should prove to be a solid platform for future studies of ribosome biogenesis across a host of model organisms.

Citing Articles

Life sets off a cascade of machines.

Tlusty T, Libchaber A Proc Natl Acad Sci U S A. 2025; 122(4):e2418000122.

PMID: 39854238 PMC: 11789027. DOI: 10.1073/pnas.2418000122.


The proline-rich antimicrobial peptide Api137 disrupts large ribosomal subunit assembly and induces misfolding.

Lauer S, Gasse J, Krizsan A, Reepmeyer M, Sprink T, Nikolay R Nat Commun. 2025; 16(1):567.

PMID: 39794318 PMC: 11723945. DOI: 10.1038/s41467-025-55836-8.


Autonomous ribosome biogenesis in vitro.

Kosaka Y, Miyawaki Y, Mori M, Aburaya S, Nishizawa C, Chujo T Nat Commun. 2025; 16(1):514.

PMID: 39779722 PMC: 11711502. DOI: 10.1038/s41467-025-55853-7.


Eukaryotic viruses encode the ribosomal protein eL40.

Thomy J, Schvarcz C, McBeain K, Edwards K, Steward G Npj Viruses. 2024; 2(1):51.

PMID: 39464202 PMC: 11499249. DOI: 10.1038/s44298-024-00060-2.


Assembly of the bacterial ribosome with circularly permuted rRNA.

Dong X, Sheng K, Gebert L, Aiyer S, MacRae I, Lyumkis D Nucleic Acids Res. 2024; 52(18):11254-11265.

PMID: 39036963 PMC: 11472049. DOI: 10.1093/nar/gkae636.


References
1.
Robertson W, Dowsett S, Hardy S . Exchange of ribosomal proteins among the ribosomes of Escherichia coli. Mol Gen Genet. 1977; 157(2):205-14. DOI: 10.1007/BF00267399. View

2.
Held W, Ballou B, Mizushima S, Nomura M . Assembly mapping of 30 S ribosomal proteins from Escherichia coli. Further studies. J Biol Chem. 1974; 249(10):3103-11. View

3.
Mulder A, Yoshioka C, Beck A, Bunner A, Milligan R, Potter C . Visualizing ribosome biogenesis: parallel assembly pathways for the 30S subunit. Science. 2010; 330(6004):673-7. PMC: 2990404. DOI: 10.1126/science.1193220. View

4.
Komarova A, Tchufistova L, Supina E, Boni I . Protein S1 counteracts the inhibitory effect of the extended Shine-Dalgarno sequence on translation. RNA. 2002; 8(9):1137-47. PMC: 1370328. DOI: 10.1017/s1355838202029990. View

5.
Paul B, Ross W, Gaal T, Gourse R . rRNA transcription in Escherichia coli. Annu Rev Genet. 2004; 38:749-70. DOI: 10.1146/annurev.genet.38.072902.091347. View