» Articles » PMID: 23203034

Impairment of Coronary Arteriolar Endothelium-dependent Dilation After Multi-walled Carbon Nanotube Inhalation: a Time-course Study

Abstract

Engineered nanomaterials have been developed for widespread applications due to many highly unique and desirable characteristics. The purpose of this study was to assess pulmonary inflammation and subepicardial arteriolar reactivity in response to multi-walled carbon nanotube (MWCNT) inhalation and evaluate the time course of vascular alterations. Rats were exposed to MWCNT aerosols producing pulmonary deposition. Pulmonary inflammation via bronchoalveolar lavage and MWCNT translocation from the lungs to systemic organs was evident 24 h post-inhalation. Coronary arterioles were evaluated 24-168 h post-exposure to determine microvascular response to changes in transmural pressure, endothelium-dependent and -independent reactivity. Myogenic responsiveness, vascular smooth muscle reactivity to nitric oxide, and α-adrenergic responses all remained intact. However, a severe impact on endothelium-dependent dilation was observed within 24 h after MWCNT inhalation, a condition which improved, but did not fully return to control after 168 h. In conclusion, results indicate that MWCNT inhalation not only leads to pulmonary inflammation and cytotoxicity at low lung burdens, but also a low level of particle translocation to systemic organs. MWCNT inhalation also leads to impairments of endothelium-dependent dilation in the coronary microcirculation within 24 h, a condition which does not fully dissipate within 168 h. The innovations within the field of nanotechnology, while exciting and novel, can only reach their full potential if toxicity is first properly assessed.

Citing Articles

Single pulmonary nanopolystyrene exposure in late-stage pregnancy dysregulates maternal and fetal cardiovascular function.

Cary C, Fournier S, Adams S, Wang X, Yurkow E, Stapleton P Toxicol Sci. 2024; 199(1):149-159.

PMID: 38366927 PMC: 11057520. DOI: 10.1093/toxsci/kfae019.


Predictive biomarkers for the early detection and management of heart failure.

Mariappan V, Srinivasan R, Pratheesh R, Jujjuvarapu M, Pillai A Heart Fail Rev. 2023; 29(2):331-353.

PMID: 37702877 DOI: 10.1007/s10741-023-10347-w.


Nanoparticles at the maternal-fetal interface.

Adams S, Stapleton P Mol Cell Endocrinol. 2023; 578:112067.

PMID: 37689342 PMC: 10591848. DOI: 10.1016/j.mce.2023.112067.


Research Progress and Molecular Mechanisms of Endothelial Cells Inflammation in Vascular-Related Diseases.

Xue J, Zhang Z, Sun Y, Jin D, Guo L, Li X J Inflamm Res. 2023; 16:3593-3617.

PMID: 37641702 PMC: 10460614. DOI: 10.2147/JIR.S418166.


Obesity-Induced Coronary Microvascular Disease Is Prevented by iNOS Deletion and Reversed by iNOS Inhibition.

Shah S, Reagan C, Bresticker J, Wolpe A, Good M, Macal E JACC Basic Transl Sci. 2023; 8(5):501-514.

PMID: 37325396 PMC: 10264569. DOI: 10.1016/j.jacbts.2022.11.005.


References
1.
Sager T, Castranova V . Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: comparison to ultrafine titanium dioxide. Part Fibre Toxicol. 2009; 6:15. PMC: 2681444. DOI: 10.1186/1743-8977-6-15. View

2.
Rama Narsimha Reddy A, Krishna D, Narsimha Reddy Y, Himabindu V . Translocation and extra pulmonary toxicities of multi wall carbon nanotubes in rats. Toxicol Mech Methods. 2010; 20(5):267-72. DOI: 10.3109/15376516.2010.484077. View

3.
Nurkiewicz T, Boegehold M . High dietary salt alters arteriolar myogenic responsiveness in normotensive and hypertensive rats. Am J Physiol. 1998; 275(6):H2095-104. DOI: 10.1152/ajpheart.1998.275.6.H2095. View

4.
Porter D, Hubbs A, Chen B, McKinney W, Mercer R, Wolfarth M . Acute pulmonary dose-responses to inhaled multi-walled carbon nanotubes. Nanotoxicology. 2012; 7(7):1179-94. PMC: 4687396. DOI: 10.3109/17435390.2012.719649. View

5.
Samet J, Dominici F, Curriero F, Coursac I, Zeger S . Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994. N Engl J Med. 2000; 343(24):1742-9. DOI: 10.1056/NEJM200012143432401. View