» Articles » PMID: 23193436

Real-time Full Bandwidth Measurement of Spectral Noise in Supercontinuum Generation

Overview
Journal Sci Rep
Specialty Science
Date 2012 Nov 30
PMID 23193436
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

The ability to measure real-time fluctuations of ultrashort pulses propagating in optical fiber has provided significant insights into fundamental dynamical effects such as modulation instability and the formation of frequency-shifting rogue wave solitons. We report here a detailed study of real-time fluctuations across the full bandwidth of a fiber supercontinuum which directly reveals the significant variation in measured noise statistics across the spectrum, and which allows us to study correlations between widely separated spectral components. For two different propagation distances corresponding to the onset phase of spectral broadening and the fully-developed supercontinuum, we measure real time noise across the supercontinuum bandwidth, and we quantify the supercontinuum noise using statistical higher-order moments and a frequency-dependent intensity correlation map. We identify correlated spectral regions within the supercontinuum associated with simultaneous sideband generation, as well as signatures of pump depletion and soliton-like pump dynamics. Experimental results are in excellent agreement with simulations.

Citing Articles

Single-Photon Level Dispersive Fourier Transform: Ultrasensitive Characterization of Noise-Driven Nonlinear Dynamics.

Sader L, Bose S, Khodadad Kashi A, Boussafa Y, Haldar R, Dauliat R ACS Photonics. 2023; 10(11):3915-3928.

PMID: 38027249 PMC: 10655252. DOI: 10.1021/acsphotonics.3c00711.


Real-time evolution dynamics during transitions between different dissipative soliton states in a single fiber laser.

Xu S, Zeng J, Sander M Opt Express. 2023; 31(16):25850-25864.

PMID: 37710460 PMC: 10544953. DOI: 10.1364/OE.494827.


Supercontinuum in integrated photonics: generation, applications, challenges, and perspectives.

Bres C, Della Torre A, Grassani D, Brasch V, Grillet C, Monat C Nanophotonics. 2023; 12(7):1199-1244.

PMID: 36969949 PMC: 10031268. DOI: 10.1515/nanoph-2022-0749.


Quantum model for supercontinuum generation process.

Safaei Bezgabadi A, Bolorizadeh M Sci Rep. 2022; 12(1):9666.

PMID: 35690620 PMC: 9188578. DOI: 10.1038/s41598-022-13808-8.


Intracavity Raman scattering couples soliton molecules with terahertz phonons.

Volkel A, Nimmesgern L, Mielnik-Pyszczorski A, Wirth T, Herink G Nat Commun. 2022; 13(1):2066.

PMID: 35440623 PMC: 9018723. DOI: 10.1038/s41467-022-29649-y.


References
1.
Gu X, Xu L, Kimmel M, Zeek E, OShea P, Shreenath A . Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum. Opt Lett. 2007; 27(13):1174-6. DOI: 10.1364/ol.27.001174. View

2.
Schmidt , KNOLL , WELSCH , Zielonka , Konig , Sizmann . Enhanced quantum correlations in bound higher-order solitons. Phys Rev Lett. 2000; 85(18):3801-4. DOI: 10.1103/PhysRevLett.85.3801. View

3.
Sharping J, Chen J, Li X, Kumar P, Windeler R . Quantum-correlated twin photons from microstructure fiber. Opt Express. 2009; 12(14):3086-94. DOI: 10.1364/opex.12.003086. View

4.
Corwin K, Newbury N, Dudley J, Coen S, Diddams S, Weber K . Fundamental noise limitations to supercontinuum generation in microstructure fiber. Phys Rev Lett. 2003; 90(11):113904. DOI: 10.1103/PhysRevLett.90.113904. View

5.
Fortier T, Ye J, Cundiff S, Windeler R . Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carrier-envelope phase. Opt Lett. 2007; 27(6):445-7. DOI: 10.1364/ol.27.000445. View