» Articles » PMID: 23192022

Structure of the α-1,6/α-1,4-specific Glucansucrase GTFA from Lactobacillus Reuteri 121

Overview
Date 2012 Nov 30
PMID 23192022
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

The reuteransucrase GTFA from Lactobacillus reuteri 121, which belongs to glycosyl hydrolase family GH70, synthesizes branched α-glucans with both α-1,6- and α-1,4-glycosidic linkages (reuteran) from sucrose. The crystal structure of GTFA-ΔN, a 118 kDa fragment of GTFA comprising residues 745-1763 and including the catalytic domain, was determined at 3.6 Å resolution by molecular replacement. The crystals have large solvent channels and an unusually high solvent content of 85%. GTFA-ΔN has the same domain arrangement and domain topologies as observed in previously determined GH70 glucansucrase structures. The architecture of the GTFA-ΔN active site and binding pocket confirms that glucansucrases have a conserved substrate specificity for sucrose. However, this first crystal structure of an α-1,6/α-1,4-specific glucansucrase shows that residues from conserved sequence motif IV (1128-1136 in GTFA-ΔN) contribute to the acceptor-binding subsites and that they display differences compared with other structurally characterized glucansucrases. In particular, the structure clarifies the importance of residues following the transition-state stabilizer for product specificity, and especially residue Asn1134, which is in a position to interact with sugar units in acceptor subsite +2.

Citing Articles

Unprecedented Diversity of the Glycoside Hydrolase Family 70: A Comprehensive Analysis of Sequence, Structure, and Function.

Pijning T, Dijkhuizen L J Agric Food Chem. 2024; 72(30):16911-16929.

PMID: 39025827 PMC: 11299179. DOI: 10.1021/acs.jafc.4c04807.


Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes.

Cifuente J, Colleoni C, Kalscheuer R, Guerin M Chem Rev. 2024; 124(8):4863-4934.

PMID: 38606812 PMC: 11046441. DOI: 10.1021/acs.chemrev.3c00811.


Bacterial α-Glucan and Branching Sucrases from GH70 Family: Discovery, Structure-Function Relationship Studies and Engineering.

Molina M, Cioci G, Moulis C, Severac E, Remaud-Simeon M Microorganisms. 2021; 9(8).

PMID: 34442685 PMC: 8398850. DOI: 10.3390/microorganisms9081607.


Genome-Wide Identification and Genetic Variations of the Starch Synthase Gene Family in Rice.

Zhang H, Jang S, Lar S, Lee A, Cao F, Seo J Plants (Basel). 2021; 10(6).

PMID: 34204124 PMC: 8227427. DOI: 10.3390/plants10061154.


Functional Identification of the Dextransucrase Gene of DRP105.

Du R, Zhou Z, Han Y Int J Mol Sci. 2020; 21(18).

PMID: 32916950 PMC: 7555554. DOI: 10.3390/ijms21186596.


References
1.
MacGregor E, Jespersen H, Svensson B . A circularly permuted alpha-amylase-type alpha/beta-barrel structure in glucan-synthesizing glucosyltransferases. FEBS Lett. 1996; 378(3):263-6. DOI: 10.1016/0014-5793(95)01428-4. View

2.
Kang H, Kimura A, Kim D . Bioengineering of Leuconostoc mesenteroides glucansucrases that gives selected bond formation for glucan synthesis and/or acceptor-product synthesis. J Agric Food Chem. 2011; 59(8):4148-55. DOI: 10.1021/jf104629g. View

3.
Naessens M, Cerdobbel A, Soetaert W, Vandamme E . Dextran dextrinase and dextran of Gluconobacter oxydans. J Ind Microbiol Biotechnol. 2005; 32(8):323-34. DOI: 10.1007/s10295-005-0259-5. View

4.
Welman A, Maddox I . Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol. 2003; 21(6):269-74. DOI: 10.1016/S0167-7799(03)00107-0. View

5.
German B, Schiffrin E, Reniero R, Mollet B, Pfeifer A, Neeser J . The development of functional foods: lessons from the gut. Trends Biotechnol. 1999; 17(12):492-9. DOI: 10.1016/s0167-7799(99)01380-3. View