» Articles » PMID: 23181168

3-Hydroxy-1-alkyl-2-methylpyridine-4(1H)-thiones: Inhibition of the Pseudomonas Aeruginosa Virulence Factor LasB

Overview
Specialty Chemistry
Date 2012 Nov 28
PMID 23181168
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Bacterial resistance coupled to our current arsenal of antibiotics presents us with a growing threat to public health, thus warranting the exploration of alternative antibacterial strategies. In particular, the targeting of virulence factors has been regarded as a "second generation" antibiotic approach. In Pseudomonas aeruginosa, a Zn(2+) metalloprotease virulence factor, LasB or P. aeruginosa elastase, has been implicated in the development of P. aeruginosa-related keratitis, pneumonia and burn infection. Moreover, the enzyme also plays a critical role in swarming and biofilm formation, both of which are processes that have been linked to antibiotic resistance. To further validate the importance of LasB in P. aeruginosa infection, we describe our efforts toward the discovery of non-peptidic small molecule inhibitors of LasB. Using identified compounds, we have confirmed the role that LasB plays in P. aeruginosa swarming and demonstrate the potential for LasB-targeted small molecules in studying antimicrobial resistant P. aeruginosa phenotypes.

Citing Articles

Quorum quenching effect of cyclodextrins on the pyocyanin and pyoverdine production of Pseudomonas aeruginosa.

Fekete-Kertesz I, Berkl Z, Buda K, Fenyvesi E, Szente L, Molnar M Appl Microbiol Biotechnol. 2024; 108(1):271.

PMID: 38517512 PMC: 10959793. DOI: 10.1007/s00253-024-13104-7.


Inhibitors of the Elastase LasB for the Treatment of Lung Infections.

Konstantinovic J, Kany A, Alhayek A, Abdelsamie A, Sikandar A, Voos K ACS Cent Sci. 2024; 9(12):2205-2215.

PMID: 38161367 PMC: 10755728. DOI: 10.1021/acscentsci.3c01102.


The Structures and Binding Modes of Small-Molecule Inhibitors of Elastase LasB.

Camberlein V, Jezequel G, Haupenthal J, Hirsch A Antibiotics (Basel). 2022; 11(8).

PMID: 36009930 PMC: 9404851. DOI: 10.3390/antibiotics11081060.


Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics.

Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L Signal Transduct Target Ther. 2022; 7(1):199.

PMID: 35752612 PMC: 9233671. DOI: 10.1038/s41392-022-01056-1.


Using Structure-guided Fragment-Based Drug Discovery to Target Infections in Cystic Fibrosis.

Arif S, Floto R, Blundell T Front Mol Biosci. 2022; 9:857000.

PMID: 35433835 PMC: 9006449. DOI: 10.3389/fmolb.2022.857000.


References
1.
Wu H, Lee B, Yang L, Wang H, Givskov M, Molin S . Effects of ginseng on Pseudomonas aeruginosa motility and biofilm formation. FEMS Immunol Med Microbiol. 2011; 62(1):49-56. DOI: 10.1111/j.1574-695X.2011.00787.x. View

2.
Overhage J, Bains M, Brazas M, Hancock R . Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol. 2008; 190(8):2671-9. PMC: 2293252. DOI: 10.1128/JB.01659-07. View

3.
Flipo M, Charton J, Hocine A, Dassonneville S, Deprez B, Deprez-Poulain R . Hydroxamates: relationships between structure and plasma stability. J Med Chem. 2009; 52(21):6790-802. DOI: 10.1021/jm900648x. View

4.
Mesaros N, Nordmann P, Plesiat P, Roussel-Delvallez M, Van Eldere J, Glupczynski Y . Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clin Microbiol Infect. 2007; 13(6):560-78. DOI: 10.1111/j.1469-0691.2007.01681.x. View

5.
Stowe G, Silhar P, Hixon M, Silvaggi N, Allen K, Moe S . Chirality holds the key for potent inhibition of the botulinum neurotoxin serotype a protease. Org Lett. 2010; 12(4):756-9. PMC: 2821465. DOI: 10.1021/ol902820z. View