» Articles » PMID: 2317556

On the Analysis of High Order Moments of Fluorescence Fluctuations

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1990 Feb 1
PMID 2317556
Citations 53
Authors
Affiliations
Soon will be listed here.
Abstract

A simple, straightforward analysis to characterize the distribution of aggregate sizes in a reversible aggregation system at equilibrium is presented. The method, an extension of fluorescence correlation spectroscopy (FCS), is based on measurements of higher order moments of spontaneous fluctuations of fluorescence intensity emitted from a defined open region of the sample. These fluctuations indicate fluctuations of the numbers of the fluorescent molecules in the observation region. Shot noise resulting from the random character of fluorescence emission and from the photoelectric detection system is modeled as a Poisson distribution and is subtracted from the measured photon count fluctuation moments to yield the desired fluorescence fluctuation moments. This analysis can also be used to estimate the fraction of immobile fluorophores in FCS measurements.

Citing Articles

The dependence of EGFR oligomerization on environment and structure: A camera-based N&B study.

Balasubramanian H, Sankaran J, Pandey S, Goh C, Wohland T Biophys J. 2022; 121(23):4452-4466.

PMID: 36335429 PMC: 9748371. DOI: 10.1016/j.bpj.2022.11.003.


Radial pair correlation of molecular brightness fluctuations maps protein diffusion as a function of oligomeric state within live-cell nuclear architecture.

Solano A, Lou J, Scipioni L, Gratton E, Hinde E Biophys J. 2022; 121(11):2152-2167.

PMID: 35490296 PMC: 9247470. DOI: 10.1016/j.bpj.2022.04.030.


Number and Brightness Analysis: Visualization of Protein Oligomeric State in Living Cells.

Fukushima R, Yamamoto J, Kinjo M Adv Exp Med Biol. 2021; 1310:31-58.

PMID: 33834431 DOI: 10.1007/978-981-33-6064-8_2.


Empirical Bayes method using surrounding pixel information for number and brightness analysis.

Fukushima R, Yamamoto J, Kinjo M Biophys J. 2021; 120(11):2156-2171.

PMID: 33812845 PMC: 8390835. DOI: 10.1016/j.bpj.2021.03.033.


Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria.

Cambre A, Aertsen A Microbiol Mol Biol Rev. 2020; 84(4).

PMID: 33115939 PMC: 7599038. DOI: 10.1128/MMBR.00008-20.


References
1.
Magde D, Elson E, Webb W . Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers. 1974; 13(1):29-61. DOI: 10.1002/bip.1974.360130103. View

2.
Elson E, Webb W . Concentration correlation spectroscopy: a new biophysical probe based on occupation number fluctuations. Annu Rev Biophys Bioeng. 1975; 4(00):311-34. DOI: 10.1146/annurev.bb.04.060175.001523. View

3.
Schlessinger J, Koppel D, Axelrod D, Jacobson K, Webb W, Elson E . Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. Proc Natl Acad Sci U S A. 1976; 73(7):2409-13. PMC: 430587. DOI: 10.1073/pnas.73.7.2409. View

4.
Weissman M, Schindler H, Feher G . Determination of molecular weights by fluctuation spectroscopy: application to DNA. Proc Natl Acad Sci U S A. 1976; 73(8):2776-80. PMC: 430740. DOI: 10.1073/pnas.73.8.2776. View

5.
Palmer 3rd A, Thompson N . Molecular aggregation characterized by high order autocorrelation in fluorescence correlation spectroscopy. Biophys J. 1987; 52(2):257-70. PMC: 1330077. DOI: 10.1016/S0006-3495(87)83213-7. View