» Articles » PMID: 23161029

Distinct Roles of Highly Conserved Charged Residues at the MotA-FliG Interface in Bacterial Flagellar Motor Rotation

Overview
Journal J Bacteriol
Specialty Microbiology
Date 2012 Nov 20
PMID 23161029
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

Electrostatic interactions between the stator protein MotA and the rotor protein FliG are important for bacterial flagellar motor rotation. Arg90 and Glu98 of MotA are required not only for torque generation but also for stator assembly around the rotor, but their actual roles remain unknown. Here we analyzed the roles of functionally important charged residues at the MotA-FliG interface in motor performance. About 75% of the motA(R90E) cells and 45% of the motA(E98K) cells showed no fluorescent spots of green fluorescent protein (GFP)-MotB, indicating reduced efficiency of stator assembly around the rotor. The FliG(D289K) and FliG(R281V) mutations, which restore the motility of the motA(R90E) and motA(E98K) mutants, respectively, showed reduced numbers and intensity of GFP-MotB spots as well. The FliG(D289K) mutation significantly recovered the localization of GFP-MotB to the motor in the motA(R90E) mutant, whereas the FliG(R281V) mutation did not recover the GFP-MotB localization in the motA(E98K) mutant. These results suggest that the MotA-Arg90-FliG-Asp289 interaction is critical for the proper positioning of the stators around the rotor, whereas the MotA-Glu98-FliG-Arg281 interaction is more important for torque generation.

Citing Articles

Genetic Analysis of Flagellar-Mediated Surface Sensing by PA14.

Kuchma S, Geiger C, Webster S, Fu Y, Montoya R, OToole G bioRxiv. 2024; .

PMID: 39677620 PMC: 11643085. DOI: 10.1101/2024.12.05.627040.


Rotation of the Fla2 flagella of Cereibacter sphaeroides requires the periplasmic proteins MotK and MotE that interact with the flagellar stator protein MotB2.

Velez-Gonzalez F, Marcos-Vilchis A, Vega-Baray B, Dreyfus G, Poggio S, Camarena L PLoS One. 2024; 19(3):e0298028.

PMID: 38507361 PMC: 10954123. DOI: 10.1371/journal.pone.0298028.


Viscosity-dependent determinants of impacting the velocity of flagellar motility.

Ribardo D, Johnson J, Hendrixson D mBio. 2023; 15(1):e0254423.

PMID: 38085029 PMC: 10790790. DOI: 10.1128/mbio.02544-23.


Structure, Assembly, and Function of Flagella Responsible for Bacterial Locomotion.

Minamino T, Kinoshita M EcoSal Plus. 2023; 11(1):eesp00112023.

PMID: 37260402 PMC: 10729930. DOI: 10.1128/ecosalplus.esp-0011-2023.


Flagellar brake protein YcgR interacts with motor proteins MotA and FliG to regulate the flagellar rotation speed and direction.

Han Q, Wang S, Qian X, Guo L, Shi Y, He R Front Microbiol. 2023; 14:1159974.

PMID: 37125196 PMC: 10140304. DOI: 10.3389/fmicb.2023.1159974.


References
1.
Tang H, Braun T, Blair D . Motility protein complexes in the bacterial flagellar motor. J Mol Biol. 1996; 261(2):209-21. DOI: 10.1006/jmbi.1996.0453. View

2.
Francis N, Sosinsky G, Thomas D, DeRosier D . Isolation, characterization and structure of bacterial flagellar motors containing the switch complex. J Mol Biol. 1994; 235(4):1261-70. DOI: 10.1006/jmbi.1994.1079. View

3.
Braun T, Blair D . Targeted disulfide cross-linking of the MotB protein of Escherichia coli: evidence for two H(+) channels in the stator Complex. Biochemistry. 2001; 40(43):13051-9. DOI: 10.1021/bi011264g. View

4.
Minamino T, Imae Y, Oosawa F, Kobayashi Y, Oosawa K . Effect of intracellular pH on rotational speed of bacterial flagellar motors. J Bacteriol. 2003; 185(4):1190-4. PMC: 142873. DOI: 10.1128/JB.185.4.1190-1194.2003. View

5.
Hara N, Namba K, Minamino T . Genetic characterization of conserved charged residues in the bacterial flagellar type III export protein FlhA. PLoS One. 2011; 6(7):e22417. PMC: 3139655. DOI: 10.1371/journal.pone.0022417. View