» Articles » PMID: 23150798

Membrane Immersion Allows Rhomboid Proteases to Achieve Specificity by Reading Transmembrane Segment Dynamics

Overview
Journal Elife
Specialty Biology
Date 2012 Nov 15
PMID 23150798
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

Rhomboid proteases reside within cellular membranes, but the advantage of this unusual environment is unclear. We discovered membrane immersion allows substrates to be identified in a fundamentally-different way, based initially upon exposing 'masked' conformational dynamics of transmembrane segments rather than sequence-specific binding. EPR and CD spectroscopy revealed that the membrane restrains rhomboid gate and substrate conformation to limit proteolysis. True substrates evolved intrinsically-unstable transmembrane helices that both become unstructured when not supported by the membrane, and facilitate partitioning into the hydrophilic, active-site environment. Accordingly, manipulating substrate and gate dynamics in living cells shifted cleavage sites in a manner incompatible with extended sequence binding, but correlated with a membrane-and-helix-exit propensity scale. Moreover, cleavage of diverse non-substrates was provoked by single-residue changes that destabilize transmembrane helices. Membrane immersion thus bestows rhomboid proteases with the ability to identify substrates primarily based on reading their intrinsic transmembrane dynamics.DOI:http://dx.doi.org/10.7554/eLife.00173.001.

Citing Articles

The Dsc ubiquitin ligase complex identifies transmembrane degrons to degrade orphaned proteins at the Golgi.

Weyer Y, Schwabl S, Tang X, Purwar A, Siegmann K, Ruepp A Nat Commun. 2024; 15(1):9257.

PMID: 39461958 PMC: 11513148. DOI: 10.1038/s41467-024-53676-6.


The Dsc complex and its role in Golgi quality control.

Weyer Y, Teis D Biochem Soc Trans. 2024; 52(5):2023-2034.

PMID: 39324639 PMC: 11555709. DOI: 10.1042/BST20230375.


Lipid-polymer nanoparticles to probe the native-like environment of intramembrane rhomboid protease GlpG and its activity.

Sawczyc H, Tatsuta T, Oster C, Kosteletos S, Lange S, Bohg C Nat Commun. 2024; 15(1):7533.

PMID: 39215029 PMC: 11364529. DOI: 10.1038/s41467-024-51989-0.


Cryo-EM reveals that iRhom2 restrains ADAM17 protease activity to control the release of growth factor and inflammatory signals.

Lu F, Zhao H, Dai Y, Wang Y, Lee C, Freeman M Mol Cell. 2024; 84(11):2152-2165.e5.

PMID: 38781971 PMC: 11248996. DOI: 10.1016/j.molcel.2024.04.025.


Rhomboid protease RHBDL4/RHBDD1 cleaves SREBP-1c at endoplasmic reticulum monitoring and regulating fatty acids.

Han S, Nakakuki M, Nakagawa Y, Wang Y, Araki M, Yamamoto Y PNAS Nexus. 2023; 2(11):pgad351.

PMID: 37954160 PMC: 10637267. DOI: 10.1093/pnasnexus/pgad351.


References
1.
Stevenson L, Strisovsky K, Clemmer K, Bhatt S, Freeman M, Rather P . Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase. Proc Natl Acad Sci U S A. 2007; 104(3):1003-8. PMC: 1783354. DOI: 10.1073/pnas.0608140104. View

2.
Erez E, Fass D, Bibi E . How intramembrane proteases bury hydrolytic reactions in the membrane. Nature. 2009; 459(7245):371-8. DOI: 10.1038/nature08146. View

3.
Fraering P, Ye W, Strub J, Dolios G, LaVoie M, Ostaszewski B . Purification and characterization of the human gamma-secretase complex. Biochemistry. 2004; 43(30):9774-89. DOI: 10.1021/bi0494976. View

4.
De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm J . A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature. 1999; 398(6727):518-22. DOI: 10.1038/19083. View

5.
Li S, Goto N, Williams K, Deber C . Alpha-helical, but not beta-sheet, propensity of proline is determined by peptide environment. Proc Natl Acad Sci U S A. 1996; 93(13):6676-81. PMC: 39085. DOI: 10.1073/pnas.93.13.6676. View