» Articles » PMID: 23132550

Characterization of Afp1, an Antifreeze Protein from the Psychrophilic Yeast Glaciozyma Antarctica PI12

Overview
Journal Extremophiles
Publisher Springer
Date 2012 Nov 8
PMID 23132550
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

The psychrophilic yeast Glaciozyma antarctica demonstrated high antifreeze activity in its culture filtrate. The culture filtrate exhibited both thermal hysteresis (TH) and ice recrystallization inhibition (RI) properties. The TH of 0.1 °C was comparable to that previously reported for bacteria and fungi. A genome sequence survey of the G. antarctica genome identified a novel antifreeze protein gene. The cDNA encoded a 177 amino acid protein with 30 % similarity to a fungal antifreeze protein from Typhula ishikariensis. The expression levels of AFP1 were quantified via real time-quantitative polymerase chain reaction (RT-qPCR), and the highest expression levels were detected within 6 h of growth at -12 °C. The cDNA of the antifreeze protein was cloned into an Escherichia coli expression system. Expression of recombinant Afp1 in E. coli resulted in the formation of inclusion bodies that were subsequently denatured by treatment with urea and allowed to refold in vitro. Activity assays of the recombinant Afp1 confirmed the antifreeze protein properties with a high TH value of 0.08 °C.

Citing Articles

Antifreeze proteins produced by Antarctic yeast from the genus Glaciozyma as cryoprotectants in food storage.

Majewska E, Twarda-Clapa A, Jedrzejczak-Krzepkowska M, Kaminska-Dworznicka A, Zaklos-Szyda M, Bialkowska A PLoS One. 2025; 20(3):e0318459.

PMID: 40048460 PMC: 11884722. DOI: 10.1371/journal.pone.0318459.


Freezing and thawing in Antarctica: characterization of antifreeze protein (AFP) producing microorganisms isolated from King George Island, Antarctica.

Lopes J, Veiga V, Seminiuk B, Santos L, Luiz A, Fernandes C Braz J Microbiol. 2024; 55(2):1451-1463.

PMID: 38656427 PMC: 11153389. DOI: 10.1007/s42770-024-01345-7.


Structural diversity of marine anti-freezing proteins, properties and potential applications: a review.

Ghalamara S, Silva S, Brazinha C, Pintado M Bioresour Bioprocess. 2024; 9(1):5.

PMID: 38647561 PMC: 10992025. DOI: 10.1186/s40643-022-00494-7.


Biochemical and in silico structural characterization of a cold-active arginase from the psychrophilic yeast, Glaciozyma antarctica PI12.

Yusof N, Quay D, Kamaruddin S, Jonet M, Md Illias R, Mahadi N Extremophiles. 2024; 28(1):15.

PMID: 38300354 DOI: 10.1007/s00792-024-01333-7.


Comparative genome analysis of the freshwater fungus Filosporella fistucella indicates potential for plant-litter degradation at cold temperatures.

Rissi D, Ijaz M, Baschien C G3 (Bethesda). 2023; 13(11).

PMID: 37619983 PMC: 10627260. DOI: 10.1093/g3journal/jkad190.


References
1.
Muryoi N, Sato M, Kaneko S, Kawahara H, Obata H, Yaish M . Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. J Bacteriol. 2004; 186(17):5661-71. PMC: 516810. DOI: 10.1128/JB.186.17.5661-5671.2004. View

2.
Bendtsen J, Nielsen H, von Heijne G, Brunak S . Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004; 340(4):783-95. DOI: 10.1016/j.jmb.2004.05.028. View

3.
Idicula-Thomas S, Balaji P . Understanding the relationship between the primary structure of proteins and its propensity to be soluble on overexpression in Escherichia coli. Protein Sci. 2005; 14(3):582-92. PMC: 2279285. DOI: 10.1110/ps.041009005. View

4.
Strom C, Liu X, Jia Z . Why does insect antifreeze protein from Tenebrio molitor produce pyramidal ice crystallites?. Biophys J. 2005; 89(4):2618-27. PMC: 1366762. DOI: 10.1529/biophysj.104.056770. View

5.
Lee J, Park A, Do H, Park K, Moh S, Chi Y . Structural basis for antifreeze activity of ice-binding protein from arctic yeast. J Biol Chem. 2012; 287(14):11460-8. PMC: 3322824. DOI: 10.1074/jbc.M111.331835. View