Lee H, You D, Taylor-Just A, Linder K, Atkins H, Ralph L
Inhal Toxicol. 2022; 34(9-10):244-259.
PMID: 35704474
PMC: 9731146.
DOI: 10.1080/08958378.2022.2086651.
Fletcher P, Hamilton Jr R, Rhoderick J, Postma B, Buford M, Pestka J
Inflammation. 2021; 45(2):677-694.
PMID: 34655011
PMC: 8957518.
DOI: 10.1007/s10753-021-01576-y.
Trout K, Holian A
Curr Res Toxicol. 2020; 1:42-47.
PMID: 33336194
PMC: 7740110.
DOI: 10.1016/j.crtox.2020.04.003.
You D, Bonner J
Int J Mol Sci. 2020; 21(19).
PMID: 33022979
PMC: 7582686.
DOI: 10.3390/ijms21197310.
Chen H, Humes S, Rose M, Robinson S, Loeb J, Sabaraya I
Toxicol Appl Pharmacol. 2020; 404:115167.
PMID: 32771490
PMC: 10636740.
DOI: 10.1016/j.taap.2020.115167.
Cellular Toxicity and Immunological Effects of Carbon-based Nanomaterials.
Yuan X, Zhang X, Sun L, Wei Y, Wei X
Part Fibre Toxicol. 2019; 16(1):18.
PMID: 30975174
PMC: 6460856.
DOI: 10.1186/s12989-019-0299-z.
A novel human 3D lung microtissue model for nanoparticle-induced cell-matrix alterations.
Kabadi P, Rodd A, Simmons A, Messier N, Hurt R, Kane A
Part Fibre Toxicol. 2019; 16(1):15.
PMID: 30943996
PMC: 6448215.
DOI: 10.1186/s12989-019-0298-0.
Multi-Walled Carbon Nanotubes Augment Allergic Airway Eosinophilic Inflammation by Promoting Cysteinyl Leukotriene Production.
Carvalho S, Ferrini M, Herritt L, Holian A, Jaffar Z, Roberts K
Front Pharmacol. 2018; 9:585.
PMID: 29922162
PMC: 5996183.
DOI: 10.3389/fphar.2018.00585.
Mechanisms of carbon nanotube-induced pulmonary fibrosis: a physicochemical characteristic perspective.
Duke K, Bonner J
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017; 10(3):e1498.
PMID: 28984415
PMC: 5977978.
DOI: 10.1002/wnan.1498.
Stat-6 signaling pathway and not Interleukin-1 mediates multi-walled carbon nanotube-induced lung fibrosis in mice: insights from an adverse outcome pathway framework.
Nikota J, Banville A, Goodwin L, Wu D, Williams A, Yauk C
Part Fibre Toxicol. 2017; 14(1):37.
PMID: 28903780
PMC: 5598059.
DOI: 10.1186/s12989-017-0218-0.
STAT1-dependent and -independent pulmonary allergic and fibrogenic responses in mice after exposure to tangled versus rod-like multi-walled carbon nanotubes.
Duke K, Taylor-Just A, Ihrie M, Shipkowski K, Thompson E, Dandley E
Part Fibre Toxicol. 2017; 14(1):26.
PMID: 28716119
PMC: 5512939.
DOI: 10.1186/s12989-017-0207-3.
Genetic susceptibility to toxicologic lung responses among inbred mouse strains following exposure to carbon nanotubes and profiling of underlying gene networks.
Frank E, Carreira V, Shanmukhappa K, Medvedovic M, Prows D, Yadav J
Toxicol Appl Pharmacol. 2017; 327:59-70.
PMID: 28433707
PMC: 5543715.
DOI: 10.1016/j.taap.2017.04.019.
Mapping differential cellular protein response of mouse alveolar epithelial cells to multi-walled carbon nanotubes as a function of atomic layer deposition coating.
Hilton G, Taylor A, Hussain S, Dandley E, Griffith E, Garantziotis S
Nanotoxicology. 2017; 11(3):313-326.
PMID: 28277982
PMC: 5585014.
DOI: 10.1080/17435390.2017.1299888.
Human peripheral blood mononuclear cells (PBMCs) from smokers release higher levels of IL-1-like cytokines after exposure to combustion-generated ultrafine particles.
De Falco G, Terlizzi M, Sirignano M, Commodo M, DAnna A, Aquino R
Sci Rep. 2017; 7:43016.
PMID: 28223692
PMC: 5320442.
DOI: 10.1038/srep43016.
Phagolysosome acidification is required for silica and engineered nanoparticle-induced lysosome membrane permeabilization and resultant NLRP3 inflammasome activity.
Jessop F, Hamilton Jr R, Rhoderick J, Fletcher P, Holian A
Toxicol Appl Pharmacol. 2017; 318:58-68.
PMID: 28126413
PMC: 5326503.
DOI: 10.1016/j.taap.2017.01.012.
Myofibroblasts and lung fibrosis induced by carbon nanotube exposure.
Dong J, Ma Q
Part Fibre Toxicol. 2016; 13(1):60.
PMID: 27814727
PMC: 5097370.
DOI: 10.1186/s12989-016-0172-2.
Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure.
Jessop F, Hamilton R, Rhoderick J, Shaw P, Holian A
Toxicol Appl Pharmacol. 2016; 309:101-10.
PMID: 27594529
PMC: 5054752.
DOI: 10.1016/j.taap.2016.08.029.
Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans.
Kuempel E, Jaurand M, Moller P, Morimoto Y, Kobayashi N, Pinkerton K
Crit Rev Toxicol. 2016; 47(1):1-58.
PMID: 27537422
PMC: 5555643.
DOI: 10.1080/10408444.2016.1206061.
Environmental Immunology: Lessons Learned from Exposure to a Select Panel of Immunotoxicants.
Kreitinger J, Beamer C, Shepherd D
J Immunol. 2016; 196(8):3217-25.
PMID: 27044635
PMC: 4824550.
DOI: 10.4049/jimmunol.1502149.
Environmental impact of multi-wall carbon nanotubes in a novel model of exposure: systemic distribution, macrophage accumulation, and amyloid deposition.
Albini A, Pagani A, Pulze L, Bruno A, Principi E, Congiu T
Int J Nanomedicine. 2015; 10:6133-45.
PMID: 26457053
PMC: 4598201.
DOI: 10.2147/IJN.S85275.