» Articles » PMID: 23087642

Short-term Ionic Plasticity at GABAergic Synapses

Overview
Date 2012 Oct 23
PMID 23087642
Citations 39
Authors
Affiliations
Soon will be listed here.
Abstract

Fast synaptic inhibition in the brain is mediated by the pre-synaptic release of the neurotransmitter γ-Aminobutyric acid (GABA)and the post-synaptic activation of GABA-sensitive ionotropic receptors. As with excitatory synapses, it is being increasinly appreciated that a variety of plastic processes occur at inhibitory synapses, which operate over a range of timescales. Here we examine a form of activity-dependent plasticity that is somewhat unique to GABAergic transmission. This involves short-lasting changes to the ionic driving force for the post-synaptic receptors, a process referred to as short-term ionic plasticity. These changes are directly related to the history of activity at inhibitory synapses and are influenced by a variety of factors including the location of the synapse and the post-synaptic cell's ion regulation mechanisms. We explore the processes underlying this form of plasticity, when and where it can occur, and how it is likely to impact network activity.

Citing Articles

Effects of chronic empathic stress on synaptic efficacy, as well as short-term and long-term plasticity at the Schaffer collateral/commissural- CA1 synapses in the dorsal hippocampus of rats.

Mazaheri M, Radahmadi M, Sharifi M Metab Brain Dis. 2024; 40(1):54.

PMID: 39636524 DOI: 10.1007/s11011-024-01487-5.


GABA-Induced Seizure-Like Events Caused by Multi-ionic Interactive Dynamics.

Liu Z, De Schutter E, Li Y eNeuro. 2024; 11(10).

PMID: 39443111 PMC: 11524612. DOI: 10.1523/ENEURO.0308-24.2024.


Delaying the GABA Shift Indirectly Affects Membrane Properties in the Developing Hippocampus.

Peerboom C, de Kater S, Jonker N, Rieter M, Wijne T, Wierenga C J Neurosci. 2023; 43(30):5483-5500.

PMID: 37438107 PMC: 10376938. DOI: 10.1523/JNEUROSCI.0251-23.2023.


Computational models reveal how chloride dynamics determine the optimal distribution of inhibitory synapses to minimise dendritic excitability.

Currin C, Raimondo J PLoS Comput Biol. 2022; 18(9):e1010534.

PMID: 36149893 PMC: 9534446. DOI: 10.1371/journal.pcbi.1010534.


Why won't it stop? The dynamics of benzodiazepine resistance in status epilepticus.

Burman R, Rosch R, Wilmshurst J, Sen A, Ramantani G, Akerman C Nat Rev Neurol. 2022; 18(7):428-441.

PMID: 35538233 DOI: 10.1038/s41582-022-00664-3.


References
1.
Ruusuvuori E, Li H, Huttu K, Palva J, Smirnov S, Rivera C . Carbonic anhydrase isoform VII acts as a molecular switch in the development of synchronous gamma-frequency firing of hippocampal CA1 pyramidal cells. J Neurosci. 2004; 24(11):2699-707. PMC: 6729533. DOI: 10.1523/JNEUROSCI.5176-03.2004. View

2.
Viitanen T, Ruusuvuori E, Kaila K, Voipio J . The K+-Cl cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus. J Physiol. 2010; 588(Pt 9):1527-40. PMC: 2876807. DOI: 10.1113/jphysiol.2009.181826. View

3.
Lasztoczi B, Nyitrai G, Heja L, Kardos J . Synchronization of GABAergic inputs to CA3 pyramidal cells precedes seizure-like event onset in juvenile rat hippocampal slices. J Neurophysiol. 2009; 102(4):2538-53. DOI: 10.1152/jn.91318.2008. View

4.
Kirischuk S, Clements J, Grantyn R . Presynaptic and postsynaptic mechanisms underlie paired pulse depression at single GABAergic boutons in rat collicular cultures. J Physiol. 2002; 543(Pt 1):99-116. PMC: 2290498. DOI: 10.1113/jphysiol.2002.021576. View

5.
Blaesse P, Airaksinen M, Rivera C, Kaila K . Cation-chloride cotransporters and neuronal function. Neuron. 2009; 61(6):820-38. DOI: 10.1016/j.neuron.2009.03.003. View