Niraula A, Danesh A, Merindol N, Meddeb-Mouelhi F, Desgagne-Penix I
BioTech (Basel). 2025; 14(1).
PMID: 39982273
PMC: 11843938.
DOI: 10.3390/biotech14010006.
Wang L, Qu W, Xu Y, Xia S, Xue Q, Jiang X
Foods. 2024; 13(9).
PMID: 38731757
PMC: 11083161.
DOI: 10.3390/foods13091386.
Kou M, Cui Z, Fu J, Dai W, Wang Z, Chen T
Microb Cell Fact. 2022; 21(1):150.
PMID: 35879766
PMC: 9310479.
DOI: 10.1186/s12934-022-01875-5.
Liu J, Liu M, Shi T, Sun G, Gao N, Zhao X
Nat Commun. 2022; 13(1):891.
PMID: 35173152
PMC: 8850433.
DOI: 10.1038/s41467-022-28501-7.
Lin K, Han S, Zheng S
Microb Cell Fact. 2022; 21(1):14.
PMID: 35090458
PMC: 8796525.
DOI: 10.1186/s12934-022-01741-4.
Improving CoQ productivity by strengthening glucose transmembrane of Rhodobacter sphaeroides.
Yang Y, Li L, Sun H, Li Z, Qi Z, Liu X
Microb Cell Fact. 2021; 20(1):207.
PMID: 34717624
PMC: 8557541.
DOI: 10.1186/s12934-021-01695-z.
Effect of pyruvate kinase gene deletion on the physiology of ATCC13032 under biotin-sufficient non-glutamate-producing conditions: Enhanced biomass production.
Sawada K, Wada M, Hagiwara T, Zen-In S, Imai K, Yokota A
Metab Eng Commun. 2021; 2:67-75.
PMID: 34150510
PMC: 8193254.
DOI: 10.1016/j.meteno.2015.07.001.
Evolving a New Efficient Mode of Fructose Utilization for Improved Bioproduction in .
Krahn I, Bonder D, Torregrosa-Barragan L, Stoppel D, Krause J, Rosenfeldt N
Front Bioeng Biotechnol. 2021; 9:669093.
PMID: 34124022
PMC: 8193941.
DOI: 10.3389/fbioe.2021.669093.
Fermentative -Methylanthranilate Production by Engineered .
Walter T, Al Medani N, Burgardt A, Cankar K, Ferrer L, Kerbs A
Microorganisms. 2020; 8(6).
PMID: 32521697
PMC: 7356990.
DOI: 10.3390/microorganisms8060866.
Metabolic engineering of carbohydrate metabolism systems in Corynebacterium glutamicum for improving the efficiency of L-lysine production from mixed sugar.
Xu J, Ruan H, Yu H, Liu L, Zhang W
Microb Cell Fact. 2020; 19(1):39.
PMID: 32070345
PMC: 7029506.
DOI: 10.1186/s12934-020-1294-7.
Metabolic engineering of glucose uptake systems in Corynebacterium glutamicum for improving the efficiency of L-lysine production.
Xu J, Yu H, Han M, Liu L, Zhang W
J Ind Microbiol Biotechnol. 2019; 46(7):937-949.
PMID: 30937555
DOI: 10.1007/s10295-019-02170-w.
Searching whole genome sequences for biochemical identification features of emerging and reemerging pathogenic Corynebacterium species.
Santos A, Ramos R, Silva A, Hirata Jr R, Mattos-Guaraldi A, Meyer R
Funct Integr Genomics. 2018; 18(5):593-610.
PMID: 29752561
DOI: 10.1007/s10142-018-0610-3.
Production of 4-Hydroxybenzoic Acid by an Aerobic Growth-Arrested Bioprocess Using Metabolically Engineered Corynebacterium glutamicum.
Kitade Y, Hashimoto R, Suda M, Hiraga K, Inui M
Appl Environ Microbiol. 2018; 84(6).
PMID: 29305513
PMC: 5835730.
DOI: 10.1128/AEM.02587-17.
Enhanced Glucose Consumption and Organic Acid Production by Engineered Corynebacterium glutamicum Based on Analysis of a pfkB1 Deletion Mutant.
Hasegawa S, Tanaka Y, Suda M, Jojima T, Inui M
Appl Environ Microbiol. 2016; 83(3).
PMID: 27881414
PMC: 5244295.
DOI: 10.1128/AEM.02638-16.
Changes in protein abundance are observed in bacterial isolates from a natural host.
Rees M, Stinear T, Goode R, Coppel R, Smith A, Kleifeld O
Front Cell Infect Microbiol. 2015; 5:71.
PMID: 26528441
PMC: 4604328.
DOI: 10.3389/fcimb.2015.00071.
Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant.
Zhou Z, Wang C, Xu H, Chen Z, Cai H
J Ind Microbiol Biotechnol. 2015; 42(7):1073-82.
PMID: 25952119
DOI: 10.1007/s10295-015-1630-9.
Succinate production from CO₂-grown microalgal biomass as carbon source using engineered Corynebacterium glutamicum through consolidated bioprocessing.
Lee J, Sim S, Bott M, Um Y, Oh M, Woo H
Sci Rep. 2014; 4:5819.
PMID: 25056811
PMC: 4108913.
DOI: 10.1038/srep05819.