» Articles » PMID: 23065859

Improving Strategies for Diagnosing Ovarian Cancer: a Summary of the International Ovarian Tumor Analysis (IOTA) Studies

Overview
Date 2012 Oct 16
PMID 23065859
Citations 47
Authors
Affiliations
Soon will be listed here.
Abstract

In order to ensure that ovarian cancer patients access appropriate treatment to improve the outcome of this disease, accurate characterization before any surgery on ovarian pathology is essential. The International Ovarian Tumor Analysis (IOTA) collaboration has standardized the approach to the ultrasound description of adnexal pathology. A prospectively collected large database enabled previously developed prediction models like the risk of malignancy index (RMI) to be tested and novel prediction models to be developed and externally validated in order to determine the optimal approach to characterize adnexal pathology preoperatively. The main IOTA prediction models (logistic regression model 1 (LR1) and logistic regression model 2 (LR2)) have both shown excellent diagnostic performance (area under the curve (AUC) values of 0.96 and 0.95, respectively) and outperform previous diagnostic algorithms. Their test performance almost matches subjective assessment by experienced examiners, which is accepted to be the best way to classify adnexal masses before surgery. A two-step strategy using the IOTA simple rules supplemented with subjective assessment of ultrasound findings when the rules do not apply, also reached excellent diagnostic performance (sensitivity 90%, specificity 93%) and misclassified fewer malignancies than did the RMI. An evidence-based approach to the preoperative characterization of ovarian and other adnexal masses should include the use of LR1, LR2 or IOTA simple rules and subjective assessment by an experienced examiner.

Citing Articles

A Methodological Framework for AI-Assisted Diagnosis of Ovarian Masses Using CT and MR Imaging.

Adusumilli P, Ravikumar N, Hall G, Scarsbrook A J Pers Med. 2025; 15(2).

PMID: 39997351 PMC: 11856859. DOI: 10.3390/jpm15020076.


Clinical Utility and Diagnostic Accuracy of ROMA, RMI, ADNEX, HE4, and CA125 in the Prediction of Malignancy in Adnexal Masses.

Spagnol G, Marchetti M, Carollo M, Bigardi S, Tripepi M, Facchetti E Cancers (Basel). 2024; 16(22).

PMID: 39594745 PMC: 11592863. DOI: 10.3390/cancers16223790.


Comparison of Two-Dimensional IOTA Simple Rules and Three-Dimensional Ultrasonography in Preoperative Assessment of Adnexal Masses.

Goel R, Singhal S, Manchanda S, Rajan S, Meena J, Bharti J Indian J Radiol Imaging. 2024; 34(4):588-595.

PMID: 39318565 PMC: 11419748. DOI: 10.1055/s-0044-1779734.


Diagnostic Efficacy of Ultrasound-Based International Ovarian Tumor Analysis Simple Rules and Assessment of the Different Neoplasias in the Adnexa Model in Malignancy Prediction Among Women With Adnexal Masses: A Systematic Review.

Suryawanshi S, Dwidmuthe K, Savalkar S, Bhalerao A Cureus. 2024; 16(8):e67365.

PMID: 39310483 PMC: 11413719. DOI: 10.7759/cureus.67365.


Enhancing Ovarian Tumor Diagnosis: Performance of Convolutional Neural Networks in Classifying Ovarian Masses Using Ultrasound Images.

Giourga M, Petropoulos I, Stavros S, Potiris A, Gerede A, Sapantzoglou I J Clin Med. 2024; 13(14).

PMID: 39064163 PMC: 11277638. DOI: 10.3390/jcm13144123.