» Articles » PMID: 23057731

The Way Out: What We Know and Do Not Know About Herpesvirus Nuclear Egress

Overview
Journal Cell Microbiol
Publisher Wiley
Date 2012 Oct 13
PMID 23057731
Citations 117
Authors
Affiliations
Soon will be listed here.
Abstract

Herpesvirus capsids are assembled in the nucleus of infected cells whereas final maturation occurs in the cytosol. To access the final maturation compartment, intranuclear capsids have to cross the nuclear envelope which represents a formidable barrier. They do so by budding at the inner nuclear membrane, thereby forming a primary enveloped particle residing in the perinuclear cleft. Formation of primary envelopes is driven by a heterodimeric complex of two conserved herpesviral proteins, designated in the herpes simplex virus nomenclature as pUL34, a tail-anchored transmembrane protein located in the nuclear envelope, and pUL31. This nuclear egress complex recruits viral and cellular kinases to soften the nuclear lamina and allowing access of capsids to the inner nuclear membrane. How capsids are recruited to the budding site and into the primary virus particle is still not completely understood, nor is the composition of the primary enveloped virion in the perinuclear cleft. Fusion of the primary envelope with the outer nuclear membrane then results in translocation of the capsid to the cytosol. This fusion event is clearly different from fusion during infectious entry of free virions into target cells in that it does not require the conserved essential core herpesvirus fusion machinery. Nuclear egress can thus be viewed as a vesicle (primary envelope)-mediated transport of cargo (capsids) through thenuclear envelope, a process which had been unique in cell biology. Only recently has a similar process been identified in Drosophila for nuclear egress of large ribonucleoprotein complexes. Thus, herpesviruses appear to subvert a hitherto cryptic cellular pathway for translocation of capsids from the nucleus to the cytosol.

Citing Articles

The functions of herpesvirus shuttling proteins in the virus lifecycle.

Cao H, Wang M, Cheng A, Tian B, Yang Q, Ou X Front Microbiol. 2025; 16:1515241.

PMID: 39973925 PMC: 11837949. DOI: 10.3389/fmicb.2025.1515241.


Identification and subcellular localization of proteins that interact with Duck plague virus pUL14 in infected host cells.

Wan J, Wang M, Cheng A, Zhang W, Yang Q, Tian B Poult Sci. 2024; 104(1):104649.

PMID: 39675104 PMC: 11714410. DOI: 10.1016/j.psj.2024.104649.


The loss of both pUL16 and pUL21 in HSV-1 infected cells abolishes cytoplasmic envelopment.

Roddy K, Grzesik P, Smith B, Ko N, Vashee S, Desai P bioRxiv. 2024; .

PMID: 39574695 PMC: 11581036. DOI: 10.1101/2024.11.10.622843.


Multiple functions of the herpesvirus UL14 gene product in viral infection.

Wan J, Wang M, Cheng A, Zhang W, Yang Q, Tian B Front Microbiol. 2024; 15:1483022.

PMID: 39507342 PMC: 11537914. DOI: 10.3389/fmicb.2024.1483022.


Functions of the UL51 protein during the herpesvirus life cycle.

Liu X, Wang M, Cheng A, Yang Q, Tian B, Ou X Front Microbiol. 2024; 15:1457582.

PMID: 39252835 PMC: 11381400. DOI: 10.3389/fmicb.2024.1457582.