» Articles » PMID: 23056909

Molecular Recognition and Regulation of Human Angiotensin-I Converting Enzyme (ACE) Activity by Natural Inhibitory Peptides

Overview
Journal Sci Rep
Specialty Science
Date 2012 Oct 12
PMID 23056909
Citations 56
Authors
Affiliations
Soon will be listed here.
Abstract

Angiotensin-I converting enzyme (ACE), a two-domain dipeptidylcarboxypeptidase, is a key regulator of blood pressure as a result of its critical role in the renin-angiotensin-aldosterone and kallikrein-kinin systems. Hence it is an important drug target in the treatment of cardiovascular diseases. ACE is primarily known for its ability to cleave angiotensin I (Ang I) to the vasoactive octapeptide angiotensin II (Ang II), but is also able to cleave a number of other substrates including the vasodilator bradykinin and N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP), a physiological modulator of hematopoiesis. For the first time we provide a detailed biochemical and structural basis for the domain selectivity of the natural peptide inhibitors of ACE, bradykinin potentiating peptide b and Ang II. Moreover, Ang II showed selective competitive inhibition of the carboxy-terminal domain of human somatic ACE providing evidence for a regulatory role in the human renin-angiotensin system (RAS).

Citing Articles

Dimerization and dynamics of angiotensin-I converting enzyme revealed by cryoEM and MD simulations.

Mancl J, Wu X, Zhao M, Tang W bioRxiv. 2025; .

PMID: 39868314 PMC: 11760429. DOI: 10.1101/2025.01.09.632263.


Phytochemical Investigation of Schreb. and ACE-Inhibitory Activity of Oligomer Stilbenes of the Plant.

David C, Kusz N, Agbadua O, Berkecz R, Kincses A, Spengler G Molecules. 2024; 29(14).

PMID: 39065005 PMC: 11280411. DOI: 10.3390/molecules29143427.


Oral Supplementation with Betaine Powder Ameliorated High Blood Pressure in Spontaneously Hypertensive Rats.

Pelpolage S, Sasaki R, Shimada K, Nagura T, Uchino H, Han K Metabolites. 2024; 14(7).

PMID: 39057713 PMC: 11279126. DOI: 10.3390/metabo14070390.


Intra- and postoperative relative angiotensin II deficiency in patients undergoing elective major abdominal surgery.

Krenn K, Hobart P, Adam L, Riemann G, Christiansen F, Domenig O Front Endocrinol (Lausanne). 2024; 15:1375409.

PMID: 39040679 PMC: 11260643. DOI: 10.3389/fendo.2024.1375409.


Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activity of Faba Bean-Derived Peptides After Gastrointestinal Digestion: Insight into Their Mechanism of Action.

Martineau-Cote D, Achouri A, Karboune S, LHocine L J Agric Food Chem. 2024; 72(12):6432-6443.

PMID: 38470110 PMC: 10979453. DOI: 10.1021/acs.jafc.4c00829.


References
1.
Rawlings N, Morton F, Kok C, Kong J, Barrett A . MEROPS: the peptidase database. Nucleic Acids Res. 2007; 36(Database issue):D320-5. PMC: 2238837. DOI: 10.1093/nar/gkm954. View

2.
Cushman D, Pluscec J, Williams N, Weaver E, SABO E, Kocy O . Inhibition of angiotensin-coverting enzyme by analogs of peptides from Bothrops jararaca venom. Experientia. 1973; 29(8):1032-5. DOI: 10.1007/BF01930447. View

3.
McDonald I, Thornton J . Satisfying hydrogen bonding potential in proteins. J Mol Biol. 1994; 238(5):777-93. DOI: 10.1006/jmbi.1994.1334. View

4.
Abadir P, Foster D, Crow M, Cooke C, Rucker J, Jain A . Identification and characterization of a functional mitochondrial angiotensin system. Proc Natl Acad Sci U S A. 2011; 108(36):14849-54. PMC: 3169127. DOI: 10.1073/pnas.1101507108. View

5.
Rice G, Thomas D, Grant P, Turner A, Hooper N . Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J. 2004; 383(Pt 1):45-51. PMC: 1134042. DOI: 10.1042/BJ20040634. View