» Articles » PMID: 23054555

Noninvasive and Quantitative Assessment of in Vivo Angiogenesis Using RGD-based Fluorescence Imaging of Subcutaneous Sponges

Overview
Publisher Springer
Date 2012 Oct 12
PMID 23054555
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: There is a real need to adapt simple and reproducible imaging methodologies to evaluate noninvasively pro- and antiangiogenic activities of new treatments in a physiological context in mice.

Procedure: The angiogenic response to fibroblast growth factor 2 (FGF-2) in a model of subcutaneously implanted cellulose sponges was measured in parallel after an intravenous injection of a fluorescent αvβ3 integrin-targeting molecule (Angiolone(TM)) and an fluorescence diffuse optical tomography optical imaging system and by measuring the hemoglobin content in the sponges.

Results: Optical measurements of angiogenesis correlated perfectly with the values obtained using hemoglobin quantification. This assay can be used to follow the activity of a pro- or antiangiogenic treatment like demonstrated after FGF-2 or angiostatin, respectively.

Conclusion: The perfectly controlled quality of cellulose sponges combined to this noninvasive optical method allow rapid, accurate, and reproducible measurements of angiogenic activities in vivo at the preclinical level.

Citing Articles

RGD-Based Fluorescence to Assess Placental Angiogenesis.

Josserand V, Lavaud J, Keramidas M, Collet C, Traboulsi W, Hoffmann P Methods Mol Biol. 2023; 2728:131-136.

PMID: 38019397 DOI: 10.1007/978-1-0716-3495-0_11.


FGF-2 promotes angiogenesis through a SRSF1/SRSF3/SRPK1-dependent axis that controls VEGFR1 splicing in endothelial cells.

Jia T, Jacquet T, Dalonneau F, Coudert P, Vaganay E, Exbrayat-Heritier C BMC Biol. 2021; 19(1):173.

PMID: 34433435 PMC: 8390225. DOI: 10.1186/s12915-021-01103-3.


A new chemical inhibitor of angiogenesis and tumorigenesis that targets the VEGF signaling pathway upstream of Ras.

Desroches-Castan A, Quelard D, Demeunynck M, Constant J, Dong C, Keramidas M Oncotarget. 2015; 6(7):5382-411.

PMID: 25742784 PMC: 4467156. DOI: 10.18632/oncotarget.2979.


Noninvasive and quantitative assessment of in vivo fetomaternal interface angiogenesis using RGD-based fluorescence.

Keramidas M, Lavaud J, Sergent F, Hoffmann P, Brouillet S, Feige J Biomed Res Int. 2014; 2014:309082.

PMID: 25110672 PMC: 4119748. DOI: 10.1155/2014/309082.


Spatial vascular volume fraction imaging for quantitative assessment of angiogenesis.

Liu J, Fan W, Liu M, Lin X, Wang Y, Wang F Mol Imaging Biol. 2013; 16(3):362-71.

PMID: 24158404 DOI: 10.1007/s11307-013-0694-z.


References
1.
ROBERTSON N, Discafani C, Downs E, Hailey J, Sarre O, RUNKLE Jr R . A quantitative in vivo mouse model used to assay inhibitors of tumor-induced angiogenesis. Cancer Res. 1991; 51(4):1339-44. View

2.
Vakoc B, Lanning R, Tyrrell J, Padera T, Bartlett L, Stylianopoulos T . Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med. 2009; 15(10):1219-23. PMC: 2759417. DOI: 10.1038/nm.1971. View

3.
Pircher A, Hilbe W, Heidegger I, Drevs J, Tichelli A, Medinger M . Biomarkers in tumor angiogenesis and anti-angiogenic therapy. Int J Mol Sci. 2011; 12(10):7077-99. PMC: 3211028. DOI: 10.3390/ijms12107077. View

4.
McCarty M, Baker C, Bucana C, Fidler I . Quantitative and qualitative in vivo angiogenesis assay. Int J Oncol. 2002; 21(1):5-10. View

5.
David L, Mallet C, Keramidas M, Lamande N, Gasc J, Dupuis-Girod S . Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ Res. 2008; 102(8):914-22. PMC: 2561062. DOI: 10.1161/CIRCRESAHA.107.165530. View