» Articles » PMID: 23046611

Rapid Identification of Burkholderia Mallei and Burkholderia Pseudomallei by Intact Cell Matrix-assisted Laser Desorption/Ionisation Mass Spectrometric Typing

Overview
Journal BMC Microbiol
Publisher Biomed Central
Specialty Microbiology
Date 2012 Oct 11
PMID 23046611
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Burkholderia (B.) pseudomallei and B. mallei are genetically closely related species. B. pseudomallei causes melioidosis in humans and animals, whereas B. mallei is the causative agent of glanders in equines and rarely also in humans. Both agents have been classified by the CDC as priority category B biological agents. Rapid identification is crucial, because both agents are intrinsically resistant to many antibiotics. Matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS) has the potential of rapid and reliable identification of pathogens, but is limited by the availability of a database containing validated reference spectra. The aim of this study was to evaluate the use of MALDI-TOF MS for the rapid and reliable identification and differentiation of B. pseudomallei and B. mallei and to build up a reliable reference database for both organisms.

Results: A collection of ten B. pseudomallei and seventeen B. mallei strains was used to generate a library of reference spectra. Samples of both species could be identified by MALDI-TOF MS, if a dedicated subset of the reference spectra library was used. In comparison with samples representing B. mallei, higher genetic diversity among B. pseudomallei was reflected in the higher average Eucledian distances between the mass spectra and a broader range of identification score values obtained with commercial software for the identification of microorganisms. The type strain of B. pseudomallei (ATCC 23343) was isolated decades ago and is outstanding in the spectrum-based dendrograms probably due to massive methylations as indicated by two intensive series of mass increments of 14 Da specifically and reproducibly found in the spectra of this strain.

Conclusions: Handling of pathogens under BSL 3 conditions is dangerous and cumbersome but can be minimized by inactivation of bacteria with ethanol, subsequent protein extraction under BSL 1 conditions and MALDI-TOF MS analysis being faster than nucleic amplification methods. Our spectra demonstrated a higher homogeneity in B. mallei than in B. pseudomallei isolates. As expected for closely related species, the identification process with MALDI Biotyper software (Bruker Daltonik GmbH, Bremen, Germany) requires the careful selection of spectra from reference strains. When a dedicated reference set is used and spectra of high quality are acquired, it is possible to distinguish both species unambiguously. The need for a careful curation of reference spectra databases is stressed.

Citing Articles

A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria.

Lasch P, Beyer W, Bosch A, Borriss R, Drevinek M, Dupke S Sci Data. 2025; 12(1):187.

PMID: 39890826 PMC: 11785946. DOI: 10.1038/s41597-025-04504-z.


Performance of MALDI-TOF MS, real-time PCR, antigen detection, and automated biochemical testing for the identification of .

Campbell S, Taylor B, Menouhos D, Hennessy J, Mayo M, Baird R J Clin Microbiol. 2024; 62(10):e0096124.

PMID: 39235248 PMC: 11481520. DOI: 10.1128/jcm.00961-24.


Glanders Diagnosis in an Asymptomatic Mare from Brazil: Insights from Serology, Microbiological Culture, Mass Spectrometry, and Genome Sequencing.

Suniga P, Mantovani C, Santos M, Egito A, Verbisck N, Santos L Pathogens. 2023; 12(10).

PMID: 37887766 PMC: 10609850. DOI: 10.3390/pathogens12101250.


Research on the establishment and application of protein fingerprint spectrum database of in Hainan Province China.

Huang M, Wu H, Liu L, Wang X New Microbes New Infect. 2021; 43:100938.

PMID: 34603736 PMC: 8473758. DOI: 10.1016/j.nmni.2021.100938.


Determination and Identification of Antibiotic Drugs and Bacterial Strains in Biological Samples.

Pauter K, Szultka-Mlynska M, Buszewski B Molecules. 2020; 25(11).

PMID: 32486359 PMC: 7321139. DOI: 10.3390/molecules25112556.


References
1.
Schmoock G, Ehricht R, Melzer F, Rassbach A, Scholz H, Neubauer H . DNA microarray-based detection and identification of Burkholderia mallei, Burkholderia pseudomallei and Burkholderia spp. Mol Cell Probes. 2009; 23(3-4):178-87. DOI: 10.1016/j.mcp.2009.04.001. View

2.
Marklein G, Josten M, Klanke U, Muller E, Horre R, Maier T . Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol. 2009; 47(9):2912-7. PMC: 2738125. DOI: 10.1128/JCM.00389-09. View

3.
OCarroll M, Kidd T, Coulter C, Smith H, Rose B, Harbour C . Burkholderia pseudomallei: another emerging pathogen in cystic fibrosis. Thorax. 2003; 58(12):1087-91. PMC: 1746554. DOI: 10.1136/thorax.58.12.1087. View

4.
Corral D, Coates A, Yau Y, Tellier R, Glass M, Jones S . Burkholderia pseudomallei infection in a cystic fibrosis patient from the Caribbean: a case report. Can Respir J. 2008; 15(5):237-9. PMC: 2679542. DOI: 10.1155/2008/290412. View

5.
Fernandez-Olmos A, Garcia-Castillo M, Morosini M, Lamas A, Maiz L, Canton R . MALDI-TOF MS improves routine identification of non-fermenting Gram negative isolates from cystic fibrosis patients. J Cyst Fibros. 2011; 11(1):59-62. DOI: 10.1016/j.jcf.2011.09.001. View